Cofactor Matroids and Abstract Rigidity

Bill Jackson
School of Mathematical Sciences
Queen Mary, University of London
England

Algebraic Matroids and Rigidity Theory Seminar Series
25 June, 2020
A matroid \mathcal{M} is a pair (E, I) where E is a finite set and I is a family of subsets of E satisfying:

- $\emptyset \in I$;
- if $A \subseteq B \subseteq E$ and $B \in I$ then $A \in I$;
- if $A, B \in I$ and $|A| < |B|$ then there exists $x \in B \setminus A$ such that $A + x \in I$.
A **matroid** \mathcal{M} is a pair (E, \mathcal{I}) where E is a finite set and \mathcal{I} is a family of subsets of E satisfying:

- $\emptyset \in \mathcal{I}$;
- if $A \subseteq B \subseteq E$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$;
- if $A, B \in \mathcal{I}$ and $|A| < |B|$ then there exists $x \in B \setminus A$ such that $A + x \in \mathcal{I}$.

$A \subseteq E$ is **independent** if $A \in \mathcal{I}$ and A is **dependent** if $A \notin \mathcal{I}$. The minimal dependent sets of \mathcal{M} are the **circuits** of \mathcal{M}. The **rank** of A, $r(A)$, is the cardinality of a maximal independent subset of A. The **rank** of \mathcal{M} is the cardinality of a maximal independent subset of E.

Cofactor Matroids

A **cofactor matroid** is a matroid with the property that for every edge e, the matroid obtained by deleting e and then adding a new element v and connecting it to all previously independent elements is isomorphic to the original matroid. This property is useful in the study of abstract rigidity.

Abstract Rigidity

In the context of matroids, abstract rigidity refers to the property of a matroid that ensures the structure is rigid, meaning it cannot be deformed into a different configuration without breaking any of its fundamental properties. This concept is crucial in the study of structural stability in various applications, including engineering and computer science.
A **matroid** \mathcal{M} is a pair (E, I) where E is a finite set and I is a family of subsets of E satisfying:

- $\emptyset \in I$;
- if $A \subseteq B \subseteq E$ and $B \in I$ then $A \in I$;
- if $A, B \in I$ and $|A| < |B|$ then there exists $x \in B \setminus A$ such that $A + x \in I$.

$A \subseteq E$ is **independent** if $A \in I$ and A is **dependent** if $A \notin I$. The minimal dependent sets of \mathcal{M} are the **circuits** of \mathcal{M}. The **rank** of A, $r(A)$, is the cardinality of a maximal independent subset of A. The **rank** of \mathcal{M} is the cardinality of a maximal independent subset of E.

The **weak order** on a set S of matroids with the same groundset is defined as follows. Given two matroids $\mathcal{M}_1 = (E, I_1)$ and $\mathcal{M}_2 = (E, I_2)$ in S, we say $\mathcal{M}_1 \preceq \mathcal{M}_2$ if $I_1 \subseteq I_2$.
A \textbf{d-dimensional framework} \((G, p)\) is a graph \(G = (V, E)\) together with a map \(p : V \to \mathbb{R}^d\).
A \textit{d-dimensional framework} \((G, p)\) is a graph \(G = (V, E)\) together with a map \(p: V \to \mathbb{R}^d\).

The \textbf{rigidity matrix} of \((G, p)\) is the matrix \(R(G, p)\) of size \(|E| \times d|V|\) in which the row associated with the edge \(v_i v_j\) is

\[
\begin{bmatrix}
v_i & & v_j \\
0 & \ldots & 0 & p(v_i) - p(v_j) & 0 & \ldots & 0 & p(v_j) - p(v_i) & 0 & \ldots & 0
\end{bmatrix}.
\]
The generic d-dimensional rigidity matroid

A d-dimensional framework (G, p) is a graph $G = (V, E)$ together with a map $p : V \to \mathbb{R}^d$.

The **rigidity matrix** of (G, p) is the matrix $R(G, p)$ of size $|E| \times d|V|$ in which the row associated with the edge $v_i v_j$ is

$$v_i v_j \begin{bmatrix} 0 \ldots 0 & p(v_i) - p(v_j) & 0 \ldots 0 & p(v_j) - p(v_i) & 0 \ldots 0 \end{bmatrix}.$$

The **generic d-dimensional rigidity matroid** $\mathcal{R}_{n,d}$ is the row matroid of the rigidity matrix $R(K_n, p)$ for any generic $p : V(K_n) \to \mathbb{R}^d$.

The generic d-dimensional rigidity matroid

A d-dimensional framework (G, p) is a graph $G = (V, E)$ together with a map $p : V \rightarrow \mathbb{R}^d$. The rigidity matrix of (G, p) is the matrix $R(G, p)$ of size $|E| \times d|V|$ in which the row associated with the edge v_iv_j is

$$v_i v_j \begin{bmatrix} 0 \cdots 0 & p(v_i) - p(v_j) & 0 \cdots 0 & p(v_j) - p(v_i) & 0 \cdots 0 \end{bmatrix}. $$

The generic d-dimensional rigidity matroid $R_{n,d}$ is the row matroid of the rigidity matrix $R(K_n, p)$ for any generic $p : V(K_n) \rightarrow \mathbb{R}^d$. $R_{n,d}$ is a matroid with groundset $E(K_n)$ with rank $dn - \binom{d+1}{2}$. It is the algebraic matroid of the d-dimensional Cayley-Hamilton variety defined by the polynomial equations $\|p(v_i) - p(v_j)\|^2 = d_{ij}$. Its rank function can be determined (by good characterisations and polynomial algorithms) when $d = 1, 2$. Obtaining such characterisations for $d \geq 3$ is a long standing open problem.
Abstract d-rigidity matroids

Jack Graver (1991) chose two closure properties of $\mathcal{R}_{d,n}$ and used them to define the family of abstract d-rigidity matroids on $E(K_n)$. Viet Hang Nguyen (2010) gave the following equivalent definition: \mathcal{M} is an abstract d-rigidity matroid iff $\text{rank } \mathcal{M} = dn - \binom{d+1}{2}$, and every $K_{d+2} \subseteq K_n$ is a circuit in \mathcal{M}.

Conjecture [Graver, 1991] For all d, $n \geq 1$, $\mathcal{R}_{d,n}$ is the unique maximal element in the family of all abstract d-rigidity matroids on $E(K_n)$.

Graver verified his conjecture for $d = 1, 2$. Walter Whiteley (1996) gave counterexamples to Graver’s conjecture for all $d \geq 4$ and $n \geq d+2$ using ‘cofactor matroids’.
Jack Graver (1991) chose two closure properties of $\mathcal{R}_{d,n}$ and used them to define the family of abstract d-rigidity matroids on $E(K_n)$. Viet Hang Nguyen (2010) gave the following equivalent definition: M is an abstract d-rigidity matroid iff
rank $M = dn - \binom{d+1}{2}$, and every $K_{d+2} \subseteq K_n$ is a circuit in M.

Conjecture [Graver, 1991]
For all $d, n \geq 1$, $\mathcal{R}_{d,n}$ is the unique maximal element in the family of all abstract d-rigidity matroids on $E(K_n)$.
Jack Graver (1991) chose two closure properties of $\mathcal{R}_{d,n}$ and used them to define the family of abstract d-rigidity matroids on $E(K_n)$. Viet Hang Nguyen (2010) gave the following equivalent definition: \mathcal{M} is an abstract d-rigidity matroid iff rank $\mathcal{M} = dn - \left(\frac{d+1}{2}\right)$, and every $K_{d+2} \subseteq K_n$ is a circuit in \mathcal{M}.

Conjecture [Graver, 1991]

For all $d, n \geq 1$, $\mathcal{R}_{d,n}$ is the unique maximal element in the family of all abstract d-rigidity matroids on $E(K_n)$.

Graver verified his conjecture for $d = 1, 2$.
Jack Graver (1991) chose two closure properties of $R_{d,n}$ and used them to define the **family of abstract d-rigidity matroids** on $E(K_n)$. Viet Hang Nguyen (2010) gave the following equivalent definition: \mathcal{M} is an abstract d-rigidity matroid iff
rank $\mathcal{M} = dn - \left(\frac{d+1}{2}\right)$, and every $K_{d+2} \subseteq K_n$ is a circuit in \mathcal{M}.

Conjecture [Graver, 1991]
For all $d, n \geq 1$, $R_{d,n}$ is the unique maximal element in the family of all abstract d-rigidity matroids on $E(K_n)$.

Graver verified his conjecture for $d = 1, 2$.

Walter Whiteley (1996) gave counterexamples to Graver’s conjecture for all $d \geq 4$ and $n \geq d + 2$ using ‘cofactor matroids’.
Given a polygonal subdivision Δ of a polygonal domain D in the plane, a bivariate function $f : D \rightarrow \mathbb{R}$ is an (s, k)-spline over Δ if it is defined as a polynomial of degree s on each face of Δ and is continuously differentiable k times on D.

The set $S_{k,s}(\Delta)$ of (s, k)-splines over Δ forms a vector space. Obtaining tight upper/lower bounds on $\dim S_{k,s}(\Delta)$ (over a given class of subdivisions Δ) is an important problem in approximation theory. Whiteley (1990) observed that $\dim S_{k,s}(\Delta)$ can be calculated from the rank of a matrix $C_{k,s}(G, p)$ which is determined by the 1-skeleton (G, p) of the subdivision Δ (viewed as a 2-dim framework), and that rigidity theory can be used to investigate the rank of this matrix. His definition of $C_{k,s}(G, p)$ makes sense for all 2-dim frameworks (not just frameworks whose underlying graph is planar).
Given a polygonal subdivision Δ of a polygonal domain D in the plane, a bivariate function $f : D \rightarrow \mathbb{R}$ is an (s, k)-spline over Δ if it is defined as a polynomial of degree s on each face of Δ and is continuously differentiable k times on D.

- The set $S^k_s(\Delta)$ of (s, k)-splines over Δ forms a vector space.
- Obtaining tight upper/lower bounds on $\dim S^k_s(\Delta)$ (over a given class of subdivisions Δ) is an important problem in approximation theory.
Bivariate Splines and Cofactor Matrices

Given a polygonal subdivision Δ of a polygonal domain D in the plane, a bivariate function $f : D \rightarrow \mathbb{R}$ is an (s, k)-spline over Δ if it is defined as a polynomial of degree s on each face of Δ and is continuously differentiable k times on D.

- The set $S^k_s(\Delta)$ of (s, k)-splines over Δ forms a vector space.
- Obtaining tight upper/lower bounds on $\dim S^k_s(\Delta)$ (over a given class of subdivisions Δ) is an important problem in approximation theory.
- Whiteley (1990) observed that $\dim S^k_s(\Delta)$ can be calculated from the rank of a matrix $C^k_s(G, p)$ which is determined by the the 1-skeleton (G, p) of the subdivision Δ (viewed as a 2-dim framework), and that rigidity theory can be used to investigate the rank of this matrix.
- His definition of $C^k_s(G, p)$ makes sense for all 2-dim frameworks (not just frameworks whose underlying graph is planar).
Let \((G, p)\) be a 2-dimensional framework and put \(p(v_i) = (x_i, y_i)\) for \(v_i \in V(G)\). For \(v_i v_j \in E(G)\) and \(d \geq 1\) let
\[
D_d(v_i, v_j) = ((x_i - x_j)^{d-1}, (x_i - x_j)^{d-2}(y_i - y_j), \ldots, (y_i - y_j)^{d-1}).
\]
Let \((G, p)\) be a 2-dimensional framework and put \(p(v_i) = (x_i, y_i)\) for \(v_i \in V(G)\). For \(v_i v_j \in E(G)\) and \(d \geq 1\) let
\[
D_d(v_i, v_j) = ((x_i - x_j)^{d-1}, (x_i - x_j)^{d-2}(y_i - y_j), \ldots, (y_i - y_j)^{d-1}).
\]

The \(C^{d-2}_{d-1}\)-cofactor matrix of \((G, p)\) is the matrix \(C^{d-2}_{d-1}(G, p)\) of size \(|E| \times d|V|\) in which the row associated with the edge \(v_i v_j\) is
\[
v_i v_j \begin{bmatrix}
0 & \ldots & 0 & D_d(v_i, v_j) & 0 & \ldots & 0 & -D_d(v_i, v_j) & 0 & \ldots & 0
\end{bmatrix}.
\]
Let \((G, p)\) be a 2-dimensional framework and put \(p(v_i) = (x_i, y_i)\) for \(v_i \in V(G)\). For \(v_iv_j \in E(G)\) and \(d \geq 1\) let
\[
D_d(v_i, v_j) = ((x_i - x_j)^{d-1}, (x_i - x_j)^{d-2}(y_i - y_j), \ldots, (y_i - y_j)^{d-1}).
\]
The \(C_{d-1}^{d-2}\)-cofactor matrix of \((G, p)\) is the matrix \(C_{d-1}^{d-2}(G, p)\) of size \(|E| \times d|V|\) in which the row associated with the edge \(v_iv_j\) is
\[
\begin{bmatrix}
v_i
D_d(v_i, v_j) & 0 & \ldots & 0 & -D_d(v_i, v_j) & 0 & \ldots & 0
\end{bmatrix}.
\]
The generic \(C_{d-1}^{d-2}\)-cofactor matroid, \(C_{d-1}^{d-2}(K_n, p)\) is the row matroid of the cofactor matrix \(C_{d-1}^{d-2}(K_n, p)\) for any generic \(p\).
Theorem [Whiteley]

- $C^{d-2}_{d-1,n}$ is an abstract d-rigidity matroid for all $d, n \geq 1$.
- $C^{d-2}_{d-1,n} = \mathcal{R}_{d,n}$ for $d = 1, 2$.
- $C^{d-2}_{d-1,n} \not\subseteq \mathcal{R}_{d,n}$ when $d \geq 4$ and $n \geq 2(d + 2)$ since $K_{d+2,d+2}$ is independent in $C^{d-2}_{d-1,n}$ and dependent in $\mathcal{R}_{d,n}$.
Theorem [Whiteley]

- $C_{d-1,n}^{d-2}$ is an abstract d-rigidity matroid for all $d, n \geq 1$.
- $C_{d-1,n}^{d-2} = R_{d,n}$ for $d = 1, 2$.
- $C_{d-1,n}^{d-2} \not\preceq R_{d,n}$ when $d \geq 4$ and $n \geq 2(d + 2)$ since $K_{d+2,d+2}$ is independent in $C_{d-1,n}^{d-2}$ and dependent in $R_{d,n}$.

Conjecture [Whiteley, 1996]

For all $d, n \geq 1$, $C_{d-1,n}^{d-2}$ is the unique maximal abstract d-rigidity matroid on $E(K_n)$.
Theorem [Whiteley]

- $C_{d-1,n}^{d-2}$ is an abstract d-rigidity matroid for all $d, n \geq 1$.
- $C_{d-1,n}^{d-2} = \mathcal{R}_{d,n}$ for $d = 1, 2$.
- $C_{d-1,n}^{d-2} \not\preceq \mathcal{R}_{d,n}$ when $d \geq 4$ and $n \geq 2(d + 2)$ since $K_{d+2,d+2}$ is independent in $C_{d-1,n}^{d-2}$ and dependent in $\mathcal{R}_{d,n}$.

Conjecture [Whiteley, 1996]

For all $d, n \geq 1$, $C_{d-1,n}^{d-2}$ is the unique maximal abstract d-rigidity matroid on $E(K_n)$.

Conjecture [Whiteley, 1996]

For all $n \geq 1$, $C_{2,n}^1 = \mathcal{R}_{3,n}$.
The maximal abstract 3-rigidity matroid

Theorem [Clinch, BJ, Tanigawa 2019+]

$C_{2,n}^1$ is the unique maximal abstract 3-rigidity matroid on $E(K_n)$.

Sketch Proof

Suppose M is an abstract 3-rigidity matroid on $E(K_n)$ and $F \subseteq E(K_n)$ is independent in M. We show that F is independent in $C_{2,n}^1$ by induction on $|F|$. Since M is an abstract 3-rigidity matroid, $|F| = r(F) \leq 3|V(F)| - 6$ and hence F has a vertex v with $d_F(v) \leq 5$. In this case, we extend F to an independent set F' in M by adding v and $d_F'(v) \leq 4$. Then F' is an independent set in $C_{2,n}^1$. Therefore, F is independent in $C_{2,n}^1$. Q.E.D.
The maximal abstract 3-rigidity matroid

Theorem [Clinch, BJ, Tanigawa 2019+]

$C_{2,n}^1$ is the unique maximal abstract 3-rigidity matroid on $E(K_n)$.

Sketch Proof Suppose \mathcal{M} is an abstract 3-rigidity matroid on $E(K_n)$ and $F \subseteq E(K_n)$ is independent in \mathcal{M}. We show that F is independent in $C_{2,n}^1$ by induction on $|F|$. Since \mathcal{M} is an abstract 3-rigidity matroid, $|F| = r(F) \leq 3|V(F)| - 6$ and hence F has a vertex v with $d_F(v) \leq 5$.
The maximal abstract 3-rigidity matroid

Theorem [Clinch, BJ, Tanigawa 2019+]

\(C^1_{2,n} \) is the unique maximal abstract 3-rigidity matroid on \(E(K_n) \).

Sketch Proof Suppose \(M \) is an abstract 3-rigidity matroid on \(E(K_n) \) and \(F \subseteq E(K_n) \) is independent in \(M \). We show that \(F \) is independent in \(C^1_{2,n} \) by induction on \(|F| \). Since \(M \) is an abstract 3-rigidity matroid, \(|F| = r(F) \leq 3|V(F)| - 6 \) and hence \(F \) has a vertex \(v \) with \(d_F(v) \leq 5 \).

Case 1: \(d_F(v) \leq 3 \)
Theorem [Clinch, BJ, Tanigawa 2019+]

$C^2_{3,n}$ is the unique maximal abstract d-rigidity matroid on $E(K_n)$.

Sketch Proof Suppose \mathcal{M} is an abstract rigidity matroid on $E(K_n)$ and $F \subseteq E(K_n)$ is independent in \mathcal{M}. We show that F is independent in $C^1_{2,n}$ by induction on $|F|$. Since \mathcal{M} is an abstract 3-rigidity matroid, $|F| = r(F) \leq 3|V(F)| - 6$ and hence F has a vertex v with $d_F(v) \leq 5$.

Case 2: $d_F(v) = 4$
Case 3: \(d_F(v) = 5 \)

\[F - v + e + f \]

Independent in \(M \)

Double V-replacement (CJT)

Independent in \(M \)

Independent in \(C_{2,n}^1 \)

Independent in \(C_{2,n}^1 \)

Matroid theory

Induction

Induction
The rank function of $C_{2,n}^1$

A K_5-sequence in K_n is a sequence of subgraphs $(K_5^1, K_5^2, \ldots, K_5^t)$ each of which is isomorphic to K_5. It is **proper** if $K_5^i \not\subseteq \bigcup_{j=1}^{i-1} K_5^j$ for all $2 \leq i \leq t$.

Theorem [Clinch, BJ, Tanigawa 2019+]

The rank of any $F \subseteq E(K_n)$ in $C_{2,n}^1$ is given by:

$$r(F) = \min \{|F_0| + \left|\bigcup_{i=1}^t E(K_5^i)\right| - t$$

where the minimum is taken over all $F_0 \subseteq F$ and all proper K_5-sequences $(K_5^1, K_5^2, \ldots, K_5^t)$ in K_n which cover $F \setminus F_0$.

Bill Jackson
Cofactor Matroids and Abstract Rigidity
The rank function of $C_{2,n}^1$

A K_5-sequence in K_n is a sequence of subgraphs $(K_5^1, K_5^2, \ldots, K_5^t)$ each of which is isomorphic to K_5. It is **proper** if $K_5^i \nsubseteq \bigcup_{j=1}^{i-1} K_5^j$ for all $2 \leq i \leq t$.

Theorem [Clinch, BJ, Tanigawa 2019+]

The rank of any $F \subseteq E(K_n)$ in $C_{2,n}^1$ is given by

$$r(F) = \min \left\{ |F_0| + \left| \bigcup_{i=1}^{t} E(K_5^i) \right| - t \right\}$$

where the minimum is taken over all $F_0 \subseteq F$ and all proper K_5-sequences $(K_5^1, K_5^2, \ldots, K_5^t)$ in K_n which cover $F \setminus F_0$.
Let $F_0 = \{e_1, e_2, e_3\}$ and $(K_5^1, K_5^2, \ldots, K_5^7)$ be the ‘obvious’ proper K_5-sequence which covers $F \setminus F_0$. We have $|F| = 60$ and

$$r(F) \leq |F_0| + \left| \bigcup_{i=1}^{7} E(K_5^i) \right| - 7 = 59$$

so F is not independent in $C^1_{2,n}$. Since $3|V(F)| - 6 = 60$, F is not rigid in any abstract 3-rigidity matroid.
Theorem [Clinch, BJ, Tanigawa 2019+]
Let \mathcal{M} be a matroid, \mathcal{M}_0 be the truncation of \mathcal{M} to rank k and S be the set of all matroids which can be truncated to \mathcal{M}_0. Suppose that \mathcal{M} is the unique maximal matroid in S and F is a cyclic flat in \mathcal{M}. Then every element of F belongs to a circuit of \mathcal{M}_0 in F.

Take $\mathcal{M} = C_{2,n}^1$ and $k = 10$.

Corollary

Suppose $F \subseteq E(K_n)$ is a cyclic flat in $C_{2,n}^1$. Then every element of F belongs to a copy of K_5 in F.

Theorem [Clinch, BJ, Tanigawa 2019+] Every 12-connected graph is rigid in the maximal abstract 3-rigidity matroid.
Theorem [Clinch, BJ, Tanigawa 2019+]
Every 12-connected graph is rigid in the maximal abstract 3-rigidity matroid.

Lovász and Yemini (1982) conjectured that the analogous result holds for the generic 3-dimensional rigidity matroid. Examples constructed by Lovász and Yemini show that the connectivity hypothesis in the above theorem is best possible.
Problem 1 Determine whether the X-replacement operation preserves independence in the generic 3-dimensional rigidity matroid.
Problem 1 Determine whether the X-replacement operation preserves independence in the generic 3-dimensional rigidity matroid.

Problem 2 Find a polynomial algorithm for determining the rank function of $C_{2,n}^1$.

Preprints

Problem 1 Determine whether the X-replacement operation preserves independence in the generic 3-dimensional rigidity matroid.

Problem 2 Find a polynomial algorithm for determining the rank function of $C_{2,n}^1$.

Preprints
