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Normed spaces

Definition

We define a (finite dimensional real) normed space to be a pair
X = (Rd , ‖ · ‖) where ‖ · ‖ : Rd → R is a norm i.e. for all x , y ∈ Rd and
λ ∈ R:

‖x‖ ≥ 0 with equality if and only if x = 0.

‖λx‖ = |λ|‖x‖.
‖x + y‖ ≤ ‖x‖+ ‖y‖.

`dq := (Rd , ‖ · ‖q), q ∈ [1,∞),

‖(x1, . . . , xd)‖q :=

(
d∑

i=1

|xi |q
)1/q

.

`d∞ := (Rd , ‖ · ‖∞), ‖(x1, . . . , xd)‖∞ := max{|x1|, . . . , |xd |}.



Frameworks in normed spaces Graph operations Classes of independent and rigid graphs End

Differentiating the norm

Definition

A point x ∈ X \ {0} is smooth if the norm is differentiable there. We
denote the derivative of 1

2‖ · ‖
2 at x by ϕx ∈ X ∗; note that ϕ0 = 0.

ϕx is also the unique support functional of x , i.e. a linear functional
where ϕx(x) = ‖x‖2 and ‖ϕx‖∗ = ‖x‖.
Almost all points are smooth.

The map x 7→ ϕx is continuous on the smooth points plus 0; also
linear if and only if X is Euclidean.

Example (`dq for q ∈ (1,∞))

ϕx(y) := cx (q−1).y , where x (q−1) := (sgn(x1)|x1|q−1, . . . , sgn(xd)|xd |q−1)
and c = ‖x‖2−qq .

Example (`d∞)

ϕx(y) := xiyi , where |xi | > |xj | for all j 6= i .
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Rigidity matrix and independence

Let (G , p) be a (well-positioned) framework in X , i.e. G = (V ,E ) (finite
simple) graph, p : V → X , pv − pw smooth for every vw ∈ E . The
rigidity matrix of (G , p) with respect to a basis b1, . . . , bd ∈ X is the
|E | × d |V | real valued matrix R(G , p) with entries

re,(v ,k) =

{
ϕpv−pw (bk) if e = vw ,

0 otherwise.

For `dq we simplify; the altered rigidity matrix of (G , p) is the |E | × d |V |
real valued matrix R̃(G , p) with entries

re,(v ,k) =

{
[(pv − pw )(q−1)]k if e = vw ,

0 otherwise.

We say (G , p) is independent if rankR(G , p) = |E |.
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Rigidity matrix example for `2
q

Define p to be the placement of the wheel graph W5 with center v0 in `2q
where,

pv0 = (0, 0), pv1 = (−1, 0), pv2 = (0, 1), pv3 = (1, 0), pv4 = (1,−1).

The altered rigidity matrix R̃(W5, p):



(v0,1) (v0,2) (v1,1) (v1,2) (v2,1) (v2,2) (v3,1) (v3,2) (v4,1) (v4,2)

v0v1 1 0 −1 0 0 0 0 0 0 0
v0v2 0 −1 0 0 0 1 0 0 0 0
v0v3 −1 0 0 0 0 0 1 0 0 0
v0v4 −1 1 0 0 0 0 0 0 1 −1
v1v2 0 0 −1 −1 1 1 0 0 0 0
v2v3 0 0 0 0 −1 1 1 −1 0 0
v3v4 0 0 0 0 0 0 0 1 0 −1
v1v4 0 0 −2q−1 1 0 0 0 0 2q−1 −1


pv1

pv2

pv3

pv4

pv0

For q 6= 2, rank R̃(W5, p) = |E |, hence (W5, p) is independent in `2q.
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Rigidity

Let (G , p) be regular in X 1, i.e. rankR(G , p) ≥ rankR(G , p′) for all
other well-positioned frameworks. (G , p) is rigid if one of the following
equivalent conditions hold (and is flexible otherwise):

(i) If γ : [0, 1]→ XV is a continuous path with γ(0) = p, γ(1) = p′ and

‖γ(t)v − γ(t)w‖ = ‖pv − pw‖ for all t ∈ [0, 1], vw ∈ E

then (G , p) and (G , p′) are isometric.

(ii) There exists an open neighbourhood U ⊂ XV of p such that if
p′ ∈ U and ‖p′v − p′w‖ = ‖pv − pw‖ for all vw ∈ E , then (G , p) and
(G , p′) are isometric.

(iii) rankR(G , p) = d |V | − k(X ), where k(X ) denotes the dimension of
the isometry group of X .

G is rigid (resp. independent, flexible) in X if there exists a rigid (resp.
independent, flexible) regular framework (G , p) in X . (G , p)/G is
minimally rigid if it is both independent and rigid.
1We also make the assumption that the set of smooth points of X is open. This is a natural assumption to make as all of the classical

normed spaces have this property, and those that don’t form a meager subset of the set of all normed spaces.
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So what is k(X )?

For q ∈ [1, 2) ∪ (2,∞], k(`dq) = d , as only isometries are signed
permutation matrices + translations.

Theorem (Montgomery and Samelson (1943))

If X is Euclidean then k(X ) =
(
d+1
2

)
, while if X is non-Euclidean then

d ≤ k(X ) ≤
(
d
2

)
+ 1.

Observation: If G is independent in X and k := k(X ) then G is
(d , k)-sparse, i.e. |E ′| ≤ d |V ′| − k for all subgraphs (V ′,E ′); if G is
minimally rigid in X then G is (d , k)-tight, i.e. G is (d , k)-sparse and
|E | = d |V | − k.

Proposition (Kitson and Power (2014))

Let G = (V ,E ) be independent (resp. minimally rigid) in `dq for
q ∈ [1, 2) ∪ (2,∞]. Then G is (d , d)-sparse (resp. (d , d)-tight).
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A rigid example in `2
q revisited

Define p to be the placement of the wheel graph W5 with center v0 in `2q
where,

pv0 = (0, 0), pv1 = (−1, 0), pv2 = (0, 1), pv3 = (1, 0), pv4 = (1,−1).

The altered rigidity matrix R̃(W5, p):



(v0,1) (v0,2) (v1,1) (v1,2) (v2,1) (v2,2) (v3,1) (v3,2) (v4,1) (v4,2)

v0v1 1 0 −1 0 0 0 0 0 0 0
v0v2 0 −1 0 0 0 1 0 0 0 0
v0v3 −1 0 0 0 0 0 1 0 0 0
v0v4 −1 1 0 0 0 0 0 0 1 −1
v1v2 0 0 −1 −1 1 1 0 0 0 0
v2v3 0 0 0 0 −1 1 1 −1 0 0
v3v4 0 0 0 0 0 0 0 1 0 −1
v1v4 0 0 −2q−1 1 0 0 0 0 2q−1 −1


pv1

pv2

pv3

pv4

pv0

For q = 2, rank R̃(W5, p) = 2|V | − 3, hence (W5, p) is rigid in `22. For
q 6= 2, rank R̃(W5, p) = |E | = 2|V | − 2, hence (W5, p) is minimally rigid
in `2q.
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A flexible example in `2
q

Define p to be the placement of the triangle K3 in `2q where for
0 < a < 1 and b > 0,

pv1 = (0, 0), pv2 = (1, 0), pv3 = (a, b).

The altered rigidity matrix R̃(K3, p):


(v1,1) (v1,2) (v2,1) (v2,2) (v3,1) (v3,2)

v1v2 −1 0 1 0 0 0
v1v3 −aq−1 −bq−1 0 0 aq−1 bq−1

v2v3 0 0 (1− a)q−1 −bq−1 −(1− a)q−1 bq−1


For any q ∈ (1,∞), rank R̃(K3, p) = |E | = 3, hence (K3, p) is
independent in `2q. As |E | = 2|V | − 3 then (K3, p) is rigid in `2q if and
only if q = 2.
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A really weird flexible example in `2
q
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Rigidity in the plane

Theorem (Pollaczek-Geiringer (1927))

G is minimally rigid in `22 if and only if G is (2, 3)-tight.

Theorem (Kitson and Power (2014))

For q ∈ [1, 2) ∪ (2,∞], G is minimally rigid in `2q if and only if G is
(2, 2)-tight.

Theorem (D. (2020))

If X is non-Euclidean, G is minimally rigid in X if and only if G is
(2, 2)-tight.



Frameworks in normed spaces Graph operations Classes of independent and rigid graphs End

Strict convexity and smoothness

A normed space X with unit ball B is

(i) strictly convex if B is strictly convex, and

(ii) smooth if the boundary of B is a differentiable manifold.

Equivalently, a normed space X is

(i) strictly convex if x 7→ ϕx is injective on the set of smooth points,
and

(ii) smooth if every non-zero point in X is smooth.

Importantly, X is strictly convex and smooth if and only if x 7→ ϕx is a
homeomorphism from X to X ∗.

Example

For d ≥ 2, `dq is strictly convex and smooth for q ∈ (1,∞), but neither
for q ∈ {1,∞}.
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0- and 1-extensions

Figure: Examples a 3-dimensional 0-extension (left) and a 3-dimensional
1-extension (right).

d-dimensional 0-extension: Add new vertex connected to d vertices.

d-dimensional 1-extension: Split edge with new vertex and then
connect new vertex to d − 1 others.

Theorem

d-dimensional 0- and 1-extensions preserve independence (resp. rigidity)
in strictly convex and smooth normed spaces.



Frameworks in normed spaces Graph operations Classes of independent and rigid graphs End

Vertex splitting

Figure: A 3-dimensional vertex split.

d-dimensional vertex split: Split vertex in two, attach d − 1 neighbours to
both copies, and then share the remaining edges out between the copies.

Theorem

d-dimensional vertex splitting preserves independence (resp. rigidity) in
strictly convex and smooth normed spaces.
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Graph substitution

Figure: A vertex-to-K4 substitution at the center vertex of W5. This operation
will preserve rigidity in any non-Euclidean 2-dimensional normed space.

Vertex-to-H substitution: Replace vertex with a copy of a graph H.

Theorem

Let X be a d-dimensional normed space and G ′ be a vertex-to-H
substitution of G . If G and H are both independent in X then G ′ is
independent in X . If k(X ) = d and H is minimally rigid, then G ′ is
minimally rigid in X if and only if G is minimally rigid in X .
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Coning operation

Coning: Add a new vertex connected to every vertex.

Theorem

Let G ′ be obtained from G by a coning operation. If G is independent in
`dq then G ′ is independent in `d+1

q for any q ∈ (1,∞). Furthermore, if G

is minimally rigid in `dq , then G ′ is minimally rigid in `d+1
q if and only if

q = 2.
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Bracing operation

k-vertex bracing: Add two vertices connected to k vertices and each
other.

Theorem

Let G ′ be obtained from G by a 2d-vertex bracing operation. If G is
independent in `dq then G ′ is independent in `d+1

q for any
q ∈ (1, 2) ∪ (2,∞).

Corollary

The graph K2d is minimally rigid in `dq for all q ∈ (1, 2) ∪ (2,∞).
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Important conjectures

Conjecture

The graph K2d is rigid in every d-dimensional normed space.

The latter conjecture is known to be true for:

Any smooth `q space.

dimX = 2; D. (2020).

The 3-dimensional cylinder normed space; Kitson and Levene (2020).

The 4-dimensional hypercyclinder normed space; Kitson and Levene
(2020).

Open question: does every normed space have a rigid graph?

Conjecture

Let X be a normed space with d = k(X ) = dimX . Then G is minimally
rigid in X if and only if G is (d , d)-tight.
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Degree bounded graphs

Theorem

Let G be a connected graph with δ(G ) ≤ d + 1 and ∆(G ) ≤ d + 2 for
any d ≥ 3. Then for q ∈ (1, 2) ∪ (2,∞), the graph G is independent in
`dq if and only if G is (d , d)-sparse.

Theorem

Let X be a strictly convex and smooth 3-dimensional normed space. If
G = (V ,E ) is a graph where |E ′| ≤ 1

2 (5|V ′| − 7) for all subgraphs with
at least one edge, then G is independent in X .
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Triangulations of surfaces

For any triangulation G = (V ,E ) of a compact surface S we have

3χ(S) = 3|V | − |E |

where χ(S) is the Euler characteristic of S .

S χ(S) 3|V | − |E |
Sphere 2 6

Torus of genus g 2-2g 6(1-g)
Projective plane 1 3
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Triangulations of the sphere

Theorem (Steinitz and Rademacher (1934))

Every triangulation of the sphere can be formed from K4 by
3-dimensional vertex-splitting.

Theorem

Let X be a strictly convex and smooth 3-dimensional normed space.
Then any triangulation of the sphere is independent in X .

Corollary

Let X be a strictly convex and smooth 3-dimensional normed space.
Then any triangulation of the sphere is flexible in X .
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Triangulations of the projective plane

Theorem (Barnette (1982))

Every triangulation of the projective plane can be formed from K6 or
K7 − K3 by 3-dimensional vertex-splitting.

Lemma

For q ∈ (1, 2) ∪ (2,∞), the graph K7 − K3 is minimally rigid in `3q.

Theorem

For q ∈ (1, 2) ∪ (2,∞), any triangulation of the projective plane is
minimally rigid in `3q.
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Thank you for listening!
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