Which graphs are rigid in ℓ_q spaces?

Sean Dewar ¹ Derek Kitson ² Anthony Nixon ³

¹Johann Radon Institute (RICAM), Linz

²Mary Immaculate College, Limerick

³Lancaster University, Lancaster

September 10th, 2020

Contact: sean.dewar@ricam.oeaw.ac.at

Acknowledgement: S.D. supported by the Austrian Science Fund (FWF): P31888. D.K. supported by the Engineering and Physical Sciences Research Council [grant numbers EP/P01108X/1 and EP/S00940X/1].

Normed spaces

Definition

We define a (finite dimensional real) normed space to be a pair $X = (\mathbb{R}^d, \|\cdot\|)$ where $\|\cdot\| : \mathbb{R}^d \to \mathbb{R}$ is a *norm* i.e. for all $x, y \in \mathbb{R}^d$ and $\lambda \in \mathbb{R}$:

• $||x|| \ge 0$ with equality if and only if x = 0.

•
$$\|\lambda x\| = |\lambda| \|x\|.$$

•
$$||x+y|| \le ||x|| + ||y||.$$

•
$$\ell^d_q := (\mathbb{R}^d, \|\cdot\|_q), \ q \in [1,\infty),$$

$$\|(x_1,\ldots,x_d)\|_q := \left(\sum_{i=1}^d |x_i|^q\right)^{1/q}.$$

• $\ell_{\infty}^{d} := (\mathbb{R}^{d}, \|\cdot\|_{\infty}), \|(x_{1}, \dots, x_{d})\|_{\infty} := \max\{|x_{1}|, \dots, |x_{d}|\}.$

Differentiating the norm

Definition

A point $x \in X \setminus \{0\}$ is *smooth* if the norm is differentiable there. We denote the derivative of $\frac{1}{2} \| \cdot \|^2$ at x by $\varphi_x \in X^*$; note that $\varphi_0 = 0$.

- φ_x is also the unique support functional of x, i.e. a linear functional where φ_x(x) = ||x||² and ||φ_x||^{*} = ||x||.
- Almost all points are smooth.
- The map x → φ_x is continuous on the smooth points plus 0; also linear if and only if X is Euclidean.

Example $(\ell_q^d \text{ for } q \in (1,\infty))$

$$\varphi_x(y) := cx^{(q-1)}.y$$
, where $x^{(q-1)} := (\operatorname{sgn}(x_1)|x_1|^{q-1}, \dots, \operatorname{sgn}(x_d)|x_d|^{q-1})$
and $c = \|x\|_q^{2-q}.$

Example (ℓ_{∞}^d)

$$\varphi_x(y) := x_i y_i$$
, where $|x_i| > |x_j|$ for all $j \neq i$.

Rigidity matrix and independence

Let (G, p) be a *(well-positioned)* framework in X, i.e. G = (V, E) (finite simple) graph, $p : V \to X$, $p_v - p_w$ smooth for every $vw \in E$. The *rigidity matrix of* (G, p) with respect to a basis $b_1, \ldots, b_d \in X$ is the $|E| \times d|V|$ real valued matrix R(G, p) with entries

$$r_{e,(v,k)} = \left\{ egin{array}{c} arphi_{p_v-p_w}(b_k) & ext{if } e = vw, \ 0 & ext{otherwise.} \end{array}
ight.$$

For ℓ_q^d we simplify; the *altered rigidity matrix of* (G, p) is the $|E| \times d|V|$ real valued matrix $\tilde{R}(G, p)$ with entries

$$r_{e,(v,k)} = \begin{cases} [(p_v - p_w)^{(q-1)}]_k & \text{if } e = vw, \\ 0 & \text{otherwise.} \end{cases}$$

We say (G, p) is independent if rank R(G, p) = |E|.

Rigidity matrix example for ℓ_q^2

Define p to be the placement of the wheel graph W_5 with center v_0 in ℓ_q^2 where,

 $p_{v_0} = (0,0), \quad p_{v_1} = (-1,0), \quad p_{v_2} = (0,1), \quad p_{v_3} = (1,0), \quad p_{v_4} = (1,-1).$

The altered rigidity matrix $\tilde{R}(W_5, p)$:

For $q \neq 2$, rank $\tilde{R}(W_5, p) = |E|$, hence (W_5, p) is independent in ℓ_q^2 .

Graph operations

Rigidity

Let (G, p) be regular in X^1 , i.e. rank $R(G, p) \ge \operatorname{rank} R(G, p')$ for all other well-positioned frameworks. (G, p) is rigid if one of the following equivalent conditions hold (and is *flexible* otherwise):

(i) If $\gamma: [0,1] \to X^V$ is a continuous path with $\gamma(0) = p$, $\gamma(1) = p'$ and

 $\|\gamma(t)_v - \gamma(t)_w\| = \|p_v - p_w\|$ for all $t \in [0, 1]$, $vw \in E$

then (G, p) and (G, p') are isometric.

- (ii) There exists an open neighbourhood $U \subset X^V$ of p such that if $p' \in U$ and $||p'_v p'_w|| = ||p_v p_w||$ for all $vw \in E$, then (G, p) and (G, p') are isometric.
- (iii) rank R(G, p) = d|V| k(X), where k(X) denotes the dimension of the isometry group of X.

G is *rigid* (resp. *independent*, *flexible*) in *X* if there exists a rigid (resp. independent, flexible) regular framework (G, p) in *X*. (G, p)/G is *minimally rigid* if it is both independent and rigid.

 1 We also make the assumption that the set of smooth points of X is open. This is a natural assumption to make as all of the classical

normed spaces have this property, and those that don't form a meager subset of the set of all normed spaces.

So what is k(X)?

For $q \in [1,2) \cup (2,\infty]$, $k(\ell_q^d) = d$, as only isometries are signed permutation matrices + translations.

Theorem (Montgomery and Samelson (1943))

If X is Euclidean then $k(X) = \binom{d+1}{2}$, while if X is non-Euclidean then $d \le k(X) \le \binom{d}{2} + 1$.

Observation: If G is independent in X and k := k(X) then G is (d, k)-sparse, i.e. $|E'| \le d|V'| - k$ for all subgraphs (V', E'); if G is minimally rigid in X then G is (d, k)-tight, i.e. G is (d, k)-sparse and |E| = d|V| - k.

Proposition (Kitson and Power (2014))

Let G = (V, E) be independent (resp. minimally rigid) in ℓ_q^d for $q \in [1, 2) \cup (2, \infty]$. Then G is (d, d)-sparse (resp. (d, d)-tight).

gid graphs

A rigid example in ℓ_q^2 revisited

Define p to be the placement of the wheel graph W_5 with center v_0 in ℓ_q^2 where,

$$p_{v_0}=(0,0), \quad p_{v_1}=(-1,0), \quad p_{v_2}=(0,1), \quad p_{v_3}=(1,0), \quad p_{v_4}=(1,-1).$$

The altered rigidity matrix $\tilde{R}(W_5, p)$:

For q = 2, rank $\tilde{R}(W_5, p) = 2|V| - 3$, hence (W_5, p) is rigid in ℓ_2^2 . For $q \neq 2$, rank $\tilde{R}(W_5, p) = |E| = 2|V| - 2$, hence (W_5, p) is minimally rigid in ℓ_q^2 .

A flexible example in ℓ_q^2

Define p to be the placement of the triangle K_3 in ℓ_q^2 where for 0 < a < 1 and b > 0,

$$p_{v_1} = (0,0), \qquad p_{v_2} = (1,0), \qquad p_{v_3} = (a,b).$$

The altered rigidity matrix $\tilde{R}(K_3, p)$:

$$\begin{smallmatrix} (v_1,1) & (v_1,2) & (v_2,1) & (v_2,2) & (v_3,1) & (v_3,2) \\ v_1v_2 & \begin{bmatrix} -1 & 0 & 1 & 0 & 0 & 0 \\ -a^{q-1} & -b^{q-1} & 0 & 0 & a^{q-1} & b^{q-1} \\ 0 & 0 & (1-a)^{q-1} & -b^{q-1} & -(1-a)^{q-1} & b^{q-1} \end{bmatrix}$$

For any $q \in (1, \infty)$, rank $\tilde{R}(K_3, p) = |E| = 3$, hence (K_3, p) is independent in ℓ_q^2 . As |E| = 2|V| - 3 then (K_3, p) is rigid in ℓ_q^2 if and only if q = 2.

Graph operations

End

Rigidity in the plane

Theorem (Pollaczek-Geiringer (1927))

G is minimally rigid in ℓ_2^2 if and only if G is (2,3)-tight.

Theorem (Kitson and Power (2014))

For $q \in [1,2) \cup (2,\infty]$, G is minimally rigid in ℓ_q^2 if and only if G is (2,2)-tight.

Theorem (D. (2020))

If X is non-Euclidean, G is minimally rigid in X if and only if G is (2,2)-tight.

Strict convexity and smoothness

A normed space X with unit ball B is

- (i) strictly convex if B is strictly convex, and
- (ii) smooth if the boundary of B is a differentiable manifold.

Equivalently, a normed space X is

- (i) strictly convex if $x\mapsto \varphi_x$ is injective on the set of smooth points, and
- (ii) *smooth* if every non-zero point in X is smooth.

Importantly, X is strictly convex and smooth if and only if $x \mapsto \varphi_x$ is a homeomorphism from X to X^* .

Example

For $d \ge 2$, ℓ_q^d is strictly convex and smooth for $q \in (1, \infty)$, but neither for $q \in \{1, \infty\}$.

- *d*-dimensional 0-extension: Add new vertex connected to *d* vertices.
- *d*-dimensional 1-extension: Split edge with new vertex and then connect new vertex to d 1 others.

Theorem

d-dimensional 0- and 1-extensions preserve independence (resp. rigidity) in strictly convex and smooth normed spaces.

Figure: A 3-dimensional vertex split.

d-dimensional vertex split: Split vertex in two, attach d-1 neighbours to both copies, and then share the remaining edges out between the copies.

Theorem

d-dimensional vertex splitting preserves independence (resp. rigidity) in strictly convex and smooth normed spaces.

Graph substitution

Figure: A vertex-to- K_4 substitution at the center vertex of W_5 . This operation will preserve rigidity in any non-Euclidean 2-dimensional normed space.

Vertex-to-H substitution: Replace vertex with a copy of a graph H.

Theorem

Let X be a d-dimensional normed space and G' be a vertex-to-H substitution of G. If G and H are both independent in X then G' is independent in X. If k(X) = d and H is minimally rigid, then G' is minimally rigid in X if and only if G is minimally rigid in X.

Coning: Add a new vertex connected to every vertex.

Theorem

Let G' be obtained from G by a coning operation. If G is independent in ℓ_q^d then G' is independent in ℓ_q^{d+1} for any $q \in (1, \infty)$. Furthermore, if G is minimally rigid in ℓ_q^d , then G' is minimally rigid in ℓ_q^{d+1} if and only if q = 2.

Bracing operation

k-vertex bracing: Add two vertices connected to k vertices and each other.

Theorem

Let G' be obtained from G by a 2d-vertex bracing operation. If G is independent in ℓ_q^d then G' is independent in ℓ_q^{d+1} for any $q \in (1,2) \cup (2,\infty)$.

Corollary

The graph K_{2d} is minimally rigid in ℓ_q^d for all $q \in (1,2) \cup (2,\infty)$.

Important conjectures

Conjecture

The graph K_{2d} is rigid in every d-dimensional normed space.

The latter conjecture is known to be true for:

- Any smooth ℓ_q space.
- dim X = 2; D. (2020).
- The 3-dimensional cylinder normed space; Kitson and Levene (2020).
- The 4-dimensional hypercyclinder normed space; Kitson and Levene (2020).

Open question: does every normed space have a rigid graph?

Conjecture

Let X be a normed space with $d = k(X) = \dim X$. Then G is minimally rigid in X if and only if G is (d, d)-tight.

Degree bounded graphs

Theorem

Let G be a connected graph with $\delta(G) \leq d + 1$ and $\Delta(G) \leq d + 2$ for any $d \geq 3$. Then for $q \in (1,2) \cup (2,\infty)$, the graph G is independent in ℓ_q^d if and only if G is (d,d)-sparse.

Theorem

Let X be a strictly convex and smooth 3-dimensional normed space. If G = (V, E) is a graph where $|E'| \le \frac{1}{2}(5|V'| - 7)$ for all subgraphs with at least one edge, then G is independent in X.

Triangulations of surfaces

For any triangulation G = (V, E) of a compact surface S we have

 $3\chi(S) = 3|V| - |E|$

where $\chi(S)$ is the *Euler characteristic* of *S*.

S	$\chi(S)$	3 V - E
Sphere	2	6
Torus of genus g	2-2g	6(1-g)
Projective plane	1	3

End

Triangulations of the sphere

Theorem (Steinitz and Rademacher (1934))

Every triangulation of the sphere can be formed from K_4 by 3-dimensional vertex-splitting.

Theorem

Let X be a strictly convex and smooth 3-dimensional normed space. Then any triangulation of the sphere is independent in X.

Corollary

Let X be a strictly convex and smooth 3-dimensional normed space. Then any triangulation of the sphere is flexible in X.

Theorem (Barnette (1982))

Every triangulation of the projective plane can be formed from K_6 or $K_7 - K_3$ by 3-dimensional vertex-splitting.

Lemma

For $q \in (1,2) \cup (2,\infty)$, the graph $K_7 - K_3$ is minimally rigid in ℓ_q^3 .

Theorem

For $q \in (1,2) \cup (2,\infty)$, any triangulation of the projective plane is minimally rigid in ℓ_q^3 .

Thank you for listening!