Which graphs are rigid in ℓ_{q} spaces?

Sean Dewar ${ }^{1}$ Derek Kitson ${ }^{2}$ Anthony Nixon ${ }^{3}$

${ }^{1}$ Johann Radon Institute (RICAM), Linz
${ }^{2}$ Mary Immaculate College, Limerick
${ }^{3}$ Lancaster University, Lancaster

September 10th, 2020

Contact: sean.dewar@ricam.oeaw.ac.at

Acknowledgement: S.D. supported by the Austrian Science Fund (FWF): P31888. D.K. supported by the Engineering and Physical Sciences Research Council [grant numbers EP/P01108X/1 and EP/S00940X/1].

Normed spaces

Definition

We define a (finite dimensional real) normed space to be a pair $X=\left(\mathbb{R}^{d},\|\cdot\|\right)$ where $\|\cdot\|: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a norm i.e. for all $x, y \in \mathbb{R}^{d}$ and $\lambda \in \mathbb{R}:$

- $\|x\| \geq 0$ with equality if and only if $x=0$.
- $\|\lambda x\|=|\lambda|\|x\|$.
- $\|x+y\| \leq\|x\|+\|y\|$.
- $\ell_{q}^{d}:=\left(\mathbb{R}^{d},\|\cdot\|_{q}\right), q \in[1, \infty)$,

$$
\left\|\left(x_{1}, \ldots, x_{d}\right)\right\|_{q}:=\left(\sum_{i=1}^{d}\left|x_{i}\right|^{q}\right)^{1 / q} .
$$

- $\ell_{\infty}^{d}:=\left(\mathbb{R}^{d},\|\cdot\|_{\infty}\right),\left\|\left(x_{1}, \ldots, x_{d}\right)\right\|_{\infty}:=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{d}\right|\right\}$.

Differentiating the norm

Definition

A point $x \in X \backslash\{0\}$ is smooth if the norm is differentiable there. We denote the derivative of $\frac{1}{2}\|\cdot\|^{2}$ at x by $\varphi_{x} \in X^{*}$; note that $\varphi_{0}=0$.

- φ_{x} is also the unique support functional of x, i.e. a linear functional where $\varphi_{x}(x)=\|x\|^{2}$ and $\left\|\varphi_{x}\right\|^{*}=\|x\|$.
- Almost all points are smooth.
- The map $x \mapsto \varphi_{x}$ is continuous on the smooth points plus 0 ; also linear if and only if X is Euclidean.

Example (ℓ_{q}^{d} for $q \in(1, \infty)$)

$\varphi_{x}(y):=c x^{(q-1)} \cdot y$, where $x^{(q-1)}:=\left(\operatorname{sgn}\left(x_{1}\right)\left|x_{1}\right|^{q-1}, \ldots, \operatorname{sgn}\left(x_{d}\right)\left|x_{d}\right|^{q-1}\right)$ and $c=\|x\|_{q}^{2-q}$.

Example $\left(\ell_{\infty}^{d}\right)$
$\varphi_{x}(y):=x_{i} y_{i}$, where $\left|x_{i}\right|>\left|x_{j}\right|$ for all $j \neq i$.

Rigidity matrix and independence

Let (G, p) be a (well-positioned) framework in X, i.e. $G=(V, E)$ (finite simple) graph, $p: V \rightarrow X, p_{v}-p_{w}$ smooth for every $v w \in E$. The rigidity matrix of (G, p) with respect to a basis $b_{1}, \ldots, b_{d} \in X$ is the $|E| \times d|V|$ real valued matrix $R(G, p)$ with entries

$$
r_{e,(v, k)}=\left\{\begin{array}{cc}
\varphi_{p_{v}-p_{w}}\left(b_{k}\right) & \text { if } e=v w \\
0 & \text { otherwise }
\end{array}\right.
$$

For ℓ_{q}^{d} we simplify; the altered rigidity matrix of (G, p) is the $|E| \times d|V|$ real valued matrix $\tilde{R}(G, p)$ with entries

$$
r_{e,(v, k)}=\left\{\begin{array}{cl}
{\left[\left(p_{v}-p_{w}\right)^{(q-1)}\right]_{k}} & \text { if } e=v w \\
0 & \text { otherwise }
\end{array}\right.
$$

We say (G, p) is independent if $\operatorname{rank} R(G, p)=|E|$.

Rigidity matrix example for ℓ_{q}^{2}

Define p to be the placement of the wheel graph W_{5} with center v_{0} in ℓ_{q}^{2} where,
$p_{v_{0}}=(0,0), \quad p_{V_{1}}=(-1,0), \quad p_{V_{2}}=(0,1), \quad p_{V_{3}}=(1,0), \quad p_{V_{4}}=(1,-1)$.
The altered rigidity matrix $\tilde{R}\left(W_{5}, p\right)$:
$v_{0} v_{1}$
$v_{0} v_{2}$
$v_{0} v_{3}$
$v_{0} v_{4}$
$v_{1} v_{2}$
$v_{2} v_{3}$
$v_{3} v_{4}$
$v_{1} v_{4}$$\left[\begin{array}{cccccccccc}\left(v_{0}, 1\right) & \left(v_{0}, 2\right) & \left(v_{1}, 1\right) & \left(v_{1}, 2\right) & \left(v_{2}, 1\right) & \left(v_{2}, 2\right) & \left(v_{3}, 1\right) & \left(v_{3}, 2\right) & \left(v_{4}, 1\right) & \left(v_{4}, 2\right) \\ 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & -1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & -2^{q-1} & 1 & 0 & 0 & 0 & 0 & 2^{q-1} & -1\end{array}\right]$

For $q \neq 2$, $\operatorname{rank} \tilde{R}\left(W_{5}, p\right)=|E|$, hence $\left(W_{5}, p\right)$ is independent in ℓ_{q}^{2}.

Rigidity

Let (G, p) be regular in X^{1}, i.e. $\operatorname{rank} R(G, p) \geq \operatorname{rank} R\left(G, p^{\prime}\right)$ for all other well-positioned frameworks. (G, p) is rigid if one of the following equivalent conditions hold (and is flexible otherwise):
(i) If $\gamma:[0,1] \rightarrow X^{V}$ is a continuous path with $\gamma(0)=p, \gamma(1)=p^{\prime}$ and

$$
\left\|\gamma(t)_{v}-\gamma(t)_{w}\right\|=\left\|p_{v}-p_{w}\right\| \quad \text { for all } t \in[0,1], v w \in E
$$

then (G, p) and $\left(G, p^{\prime}\right)$ are isometric.
(ii) There exists an open neighbourhood $U \subset X^{V}$ of p such that if $p^{\prime} \in U$ and $\left\|p_{v}^{\prime}-p_{w}^{\prime}\right\|=\left\|p_{v}-p_{w}\right\|$ for all $v w \in E$, then (G, p) and (G, p^{\prime}) are isometric.
(iii) rank $R(G, p)=d|V|-k(X)$, where $k(X)$ denotes the dimension of the isometry group of X.
G is rigid (resp. independent, flexible) in X if there exists a rigid (resp. independent, flexible) regular framework (G, p) in $X .(G, p) / G$ is minimally rigid if it is both independent and rigid.

[^0]
So what is $k(X)$?

For $q \in[1,2) \cup(2, \infty], k\left(\ell_{q}^{d}\right)=d$, as only isometries are signed permutation matrices + translations.

Theorem (Montgomery and Samelson (1943))

If X is Euclidean then $k(X)=\binom{d+1}{2}$, while if X is non-Euclidean then $d \leq k(X) \leq\binom{ d}{2}+1$.

Observation: If G is independent in X and $k:=k(X)$ then G is (d, k)-sparse, i.e. $\left|E^{\prime}\right| \leq d\left|V^{\prime}\right|-k$ for all subgraphs (V^{\prime}, E^{\prime}); if G is minimally rigid in X then G is (d, k)-tight, i.e. G is (d, k)-sparse and $|E|=d|V|-k$.

Proposition (Kitson and Power (2014))

Let $G=(V, E)$ be independent (resp. minimally rigid) in ℓ_{q}^{d} for $q \in[1,2) \cup(2, \infty]$. Then G is (d, d)-sparse (resp. (d, d)-tight).

A rigid example in ℓ_{q}^{2} revisited

Define p to be the placement of the wheel graph W_{5} with center v_{0} in ℓ_{q}^{2} where,
$p_{v_{0}}=(0,0), \quad p_{V_{1}}=(-1,0), \quad p_{V_{2}}=(0,1), \quad p_{V_{3}}=(1,0), \quad p_{V_{4}}=(1,-1)$.
The altered rigidity matrix $\tilde{R}\left(W_{5}, p\right)$:

	(vo, 1)	(vo, 2)	($v_{1}, 1$)	($v_{1}, 2$)	$\left(v_{2}, 1\right)$	($v_{2}, 2$)	(v, ${ }^{\text {r }}$)	($v_{3}, 2$)	$(\mathrm{v}, 1)$	$\left(v_{4}, 2\right)$
vov1	1	0	-1	0	0	0	0	0	0	0
$v_{0} v_{2}$	0	-1	0	0	0	1	0	0	0	0
vov3	-1	0	0	0	0	0	1	0	0	0
$v_{0} v_{4}$	-1	1	0	0	0	0	0	0	1	-1
$v_{1} v_{2}$	0	0	-1	-1	1	1	0	0	0	0
$v_{2} v_{3}$	0	0	0	0	-1	1	1	-1	0	0
$v_{3} v_{4}$	0	0	0	0	0	0	0	1	0	-1
$v_{1} v_{4}$	0	0	-2^{q-1}	1	0	0	0	0	2^{q-1}	-1

For $q=2$, $\operatorname{rank} \tilde{R}\left(W_{5}, p\right)=2|V|-3$, hence $\left(W_{5}, p\right)$ is rigid in ℓ_{2}^{2}. For $q \neq 2$, rank $\tilde{R}\left(W_{5}, p\right)=|E|=2|V|-2$, hence $\left(W_{5}, p\right)$ is minimally rigid in ℓ_{q}^{2}.

A flexible example in ℓ_{q}^{2}

Define p to be the placement of the triangle K_{3} in ℓ_{q}^{2} where for $0<a<1$ and $b>0$,

$$
p_{v_{1}}=(0,0), \quad p_{v_{2}}=(1,0), \quad p_{v_{3}}=(a, b) .
$$

The altered rigidity matrix $\tilde{R}\left(K_{3}, p\right)$:

$$
\begin{aligned}
& v_{1} v_{2} \\
& v_{1} v_{3} \\
& v_{2} v_{3}
\end{aligned}\left[\begin{array}{cccccc}
\left(v_{1}, 1\right) & \left(v_{1}, 2\right) & \left(v_{2}, 1\right) & \left(v_{2}, 2\right) & \left(v_{3}, 1\right) & \left(v_{3}, 2\right) \\
-1 & 0 & 1 & 0 & 0 & 0 \\
-a^{q-1} & -b^{q-1} & 0 & 0 & a^{q-1} & b^{q-1} \\
0 & 0 & (1-a)^{q-1} & -b^{q-1} & -(1-a)^{q-1} & b^{q-1}
\end{array}\right]
$$

For any $q \in(1, \infty)$, $\operatorname{rank} \tilde{R}\left(K_{3}, p\right)=|E|=3$, hence $\left(K_{3}, p\right)$ is independent in ℓ_{q}^{2}. As $|E|=2|V|-3$ then $\left(K_{3}, p\right)$ is rigid in ℓ_{q}^{2} if and only if $q=2$.

A really weird flexible example in ℓ_{q}^{2}

A really weird flexible example in ℓ_{q}^{2}

A really weird flexible example in ℓ_{q}^{2}

A really weird flexible example in ℓ_{q}^{2}

A really weird flexible example in ℓ_{q}^{2}

A really weird flexible example in ℓ_{q}^{2}

A really weird flexible example in ℓ_{q}^{2}

Rigidity in the plane

Theorem (Pollaczek-Geiringer (1927))

G is minimally rigid in ℓ_{2}^{2} if and only if G is $(2,3)$-tight.

Theorem (Kitson and Power (2014))

For $q \in[1,2) \cup(2, \infty], G$ is minimally rigid in ℓ_{q}^{2} if and only if G is (2, 2)-tight.

Theorem (D. (2020))
If X is non-Euclidean, G is minimally rigid in X if and only if G is (2, 2)-tight.

Strict convexity and smoothness

A normed space X with unit ball B is
(i) strictly convex if B is strictly convex, and
(ii) smooth if the boundary of B is a differentiable manifold.

Equivalently, a normed space X is
(i) strictly convex if $x \mapsto \varphi_{x}$ is injective on the set of smooth points, and
(ii) smooth if every non-zero point in X is smooth.

Importantly, X is strictly convex and smooth if and only if $x \mapsto \varphi_{x}$ is a homeomorphism from X to X^{*}.

Example

For $d \geq 2, \ell_{q}^{d}$ is strictly convex and smooth for $q \in(1, \infty)$, but neither for $q \in\{1, \infty\}$.

0- and 1-extensions

Figure: Examples a 3-dimensional 0-extension (left) and a 3-dimensional 1-extension (right).

- d-dimensional 0-extension: Add new vertex connected to d vertices.
- d-dimensional 1-extension: Split edge with new vertex and then connect new vertex to $d-1$ others.

Theorem

d-dimensional 0- and 1-extensions preserve independence (resp. rigidity) in strictly convex and smooth normed spaces.

Vertex splitting

Figure: A 3-dimensional vertex split.
d-dimensional vertex split: Split vertex in two, attach $d-1$ neighbours to both copies, and then share the remaining edges out between the copies.

Theorem

d-dimensional vertex splitting preserves independence (resp. rigidity) in strictly convex and smooth normed spaces.

Graph substitution

Figure: A vertex-to- K_{4} substitution at the center vertex of W_{5}. This operation will preserve rigidity in any non-Euclidean 2-dimensional normed space.

Vertex-to-H substitution: Replace vertex with a copy of a graph H.

Theorem

Let X be a d-dimensional normed space and G^{\prime} be a vertex-to- H substitution of G. If G and H are both independent in X then G^{\prime} is independent in X. If $k(X)=d$ and H is minimally rigid, then G^{\prime} is minimally rigid in X if and only if G is minimally rigid in X.

Coning operation

Coning: Add a new vertex connected to every vertex.

Theorem

Let G^{\prime} be obtained from G by a coning operation. If G is independent in ℓ_{q}^{d} then G^{\prime} is independent in ℓ_{q}^{d+1} for any $q \in(1, \infty)$. Furthermore, if G is minimally rigid in ℓ_{q}^{d}, then G^{\prime} is minimally rigid in ℓ_{q}^{d+1} if and only if $q=2$.

Bracing operation

k-vertex bracing: Add two vertices connected to k vertices and each other.

Theorem

Let G^{\prime} be obtained from G by a $2 d$-vertex bracing operation. If G is independent in ℓ_{q}^{d} then G^{\prime} is independent in ℓ_{q}^{d+1} for any $q \in(1,2) \cup(2, \infty)$.

Corollary

The graph $K_{2 d}$ is minimally rigid in ℓ_{q}^{d} for all $q \in(1,2) \cup(2, \infty)$.

Important conjectures

Conjecture

The graph $K_{2 d}$ is rigid in every d-dimensional normed space.
The latter conjecture is known to be true for:

- Any smooth ℓ_{q} space.
- $\operatorname{dim} X=2$; D. (2020).
- The 3-dimensional cylinder normed space; Kitson and Levene (2020).
- The 4-dimensional hypercyclinder normed space; Kitson and Levene (2020).

Open question: does every normed space have a rigid graph?

Conjecture

Let X be a normed space with $d=k(X)=\operatorname{dim} X$. Then G is minimally rigid in X if and only if G is (d, d)-tight.

Degree bounded graphs

Theorem

Let G be a connected graph with $\delta(G) \leq d+1$ and $\Delta(G) \leq d+2$ for any $d \geq 3$. Then for $q \in(1,2) \cup(2, \infty)$, the graph G is independent in ℓ_{q}^{d} if and only if G is (d, d)-sparse.

Theorem

Let X be a strictly convex and smooth 3-dimensional normed space. If $G=(V, E)$ is a graph where $\left|E^{\prime}\right| \leq \frac{1}{2}\left(5\left|V^{\prime}\right|-7\right)$ for all subgraphs with at least one edge, then G is independent in X.

Triangulations of surfaces

For any triangulation $G=(V, E)$ of a compact surface S we have

$$
3 \chi(S)=3|V|-|E|
$$

where $\chi(S)$ is the Euler characteristic of S.

S	$\chi(S)$	$3\|V\|-\|E\|$
Sphere	2	6
Torus of genus g	$2-2 g$	$6(1-\mathrm{g})$
Projective plane	1	3

Triangulations of the sphere

Theorem (Steinitz and Rademacher (1934))

Every triangulation of the sphere can be formed from K_{4} by 3-dimensional vertex-splitting.

Theorem

Let X be a strictly convex and smooth 3-dimensional normed space. Then any triangulation of the sphere is independent in X.

Corollary

Let X be a strictly convex and smooth 3-dimensional normed space. Then any triangulation of the sphere is flexible in X.

Triangulations of the projective plane

Theorem (Barnette (1982))

Every triangulation of the projective plane can be formed from K_{6} or $K_{7}-K_{3}$ by 3-dimensional vertex-splitting.

Lemma

For $q \in(1,2) \cup(2, \infty)$, the graph $K_{7}-K_{3}$ is minimally rigid in ℓ_{q}^{3}.

Theorem

For $q \in(1,2) \cup(2, \infty)$, any triangulation of the projective plane is minimally rigid in ℓ_{q}^{3}.

Thank you for listening!

[^0]: ${ }^{1}$ We also make the assumption that the set of smooth points of X is open. This is a natural assumption to make as all of the classical

