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Frameworks in normed spaces
Normed spaces

Definition
We define a (finite dimensional real) normed space to be a pair
X = (R?, |- ||) where || - || : R — R is a norm i.e. for all x,y € RY and
AeR:
@ ||x|| > 0 with equality if and only if x = 0.
o [[Ax[l = [Alllxl-
o [x+yll < Il +llyll-

o (3= (R lq). g € [1,00),

d 1/q
10+ xa)llq = (Z |x,-|q> :
i=1

o (3, = (R, || lloo), (31, - - xd)llow := max{|xal, ..., [xal}.



Frameworks in normed spaces

Differentiating the norm

Definition
A point x € X \ {0} is smooth if the norm is differentiable there. We
denote the derivative of 3 || - [|> at x by ¢« € X*; note that ¢o = 0.

@ o, is also the unique support functional of x, i.e. a linear functional
where @(x) = [|x||* and [|lx|[* = ||x]|.
@ Almost all points are smooth.

@ The map x — 4 is continuous on the smooth points plus 0; also
linear if and only if X is Euclidean.

Example (£ for g € (1,00))

ox(y) = ex(971) y, where x(9-1) = (sgn(x1)|x1|97L, ... sgn(xq)|xq|97 1)
and ¢ = [|x||279.

Example (¢2.)

©ox(y) = xjyi, where |x;| > |x;| for all j # i.




Frameworks in normed spaces
Rigidity matrix and independence

Let (G, p) be a (well-positioned) framework in X, i.e. G = (V, E) (finite
simple) graph, p: V — X, p, — pw smooth for every vw € E. The
rigidity matrix of (G, p) with respect to a basis by, ..., by € X is the

|E| x d|V/| real valued matrix R(G, p) with entries

_ | Pp—p.(bk) if e=ww,
Fe,(v.k) = { 0 otherwise.

For ¢d we simplify; Ehe altered rigidity matrix of (G, p) is the |E| x d|V/|
real valued matrix R(G, p) with entries

r — [((pv — Pw)(qil)]k if e =vw,
“(h) 0 otherwise.

We say (G, p) is independent if rank R(G, p) = |E|.
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Rigidity matrix example for Ef,

Define p to be the placement of the wheel graph W5 with center vy in Ef,
where,

pVO = (070)’ le = (_1a0)7 pV2 = (071)a pV3 = (1a0)7 pV4 = (17_1)

The altered rigidity matrix R(Ws, p):

(ol 02 (D) (12 (el) (w2 (el (w2 (wl) (w2 P,
ww[ 1 0 -1 0 0 0 0 0 0 0
we | 0 -1 0 0o 0o 1 0 0 0 0
ws | -1 0 0 o 0o o0 1 0 0 0
we | -1 1 0 0 0 0 0 0 1 -1 Pv Pvs
we| O 0 -1 -1 1 1 0 0 0 0
we | 00 0 0 -1 1 1 -1 0 0
we | 00 0 o o o o 1 0 -1
. 0 0 -2' 1 0 0 0 0 20! _1

Pv,

For g # 2, rank R(Ws, p) = |E|, hence (W, p) is independent in .
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Rigidity

Let (G, p) be regularin X!, i.e. rank R(G, p) > rank R(G, p') for all
other well-positioned frameworks. (G, p) is rigid if one of the following
equivalent conditions hold (and is flexible otherwise):

(i) Ifv:[0,1] — X" is a continuous path with v(0) = p, v(1) = p’ and
() — (0l = lIov — pull forall £ € [0,1], v € E

then (G, p) and (G, p’) are isometric.
(i) There exists an open neighbourhood U C XV of p such that if
p’ € Uand | p, —p,|l = llpv — pw| for all vw € E, then (G, p) and
(G, p’) are isometric.
(iii) rank R(G, p) = d|V| — k(X), where k(X) denotes the dimension of
the isometry group of X.
G is rigid (resp. independent, flexible) in X if there exists a rigid (resp.
independent, flexible) regular framework (G, p) in X. (G, p)/G is
minimally rigid if it is both independent and rigid.
1We also make the assumption that the set of smooth points of X is open. This is a natural assumption to make as all of the classical

normed spaces have this property, and those that don't form a meager subset of the set of all normed spaces.
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So what is k(X)?

For g € [1,2) U (2,00], k(£3) = d, as only isometries are signed
permutation matrices + translations.

Theorem (Montgomery and Samelson (1943))

If X is Euclidean then k(X) = (d;rl), while if X is non-Euclidean then
d<k(X)< () +1.

Observation: If G is independent in X and k := k(X) then G is

(d, k)-sparse, i.e. |E'| < d|V’'| — k for all subgraphs (V’/, E'); if G is
minimally rigid in X then G is (d, k)-tight, i.e. G is (d, k)-sparse and
|E| = d|V]|— k.

Proposition (Kitson and Power (2014))

Let G = (V, E) be independent (resp. minimally rigid) in {3 for
g €[1,2)U(2,00]. Then G is (d, d)-sparse (resp. (d, d)-tight).
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A rigid example in (7 revisited

Define p to be the placement of the wheel graph W5 with center vy in éi
where,

Pvy = (070)7 Pv, = (_1a0)> Pv, = (07 1)7 Pv; = (170)7 Pv, = (17 _1)

The altered rigidity matrix R(Ws, p):

W) (WD D) @2 (2) (22 D) 12 (W) (w2 P
1 0 -1 0 0 0 0 0 0 0
0o -1 0 o 0o 1 0 0 0 0
-1 0 0 o 0 0 1 0 0 0
-1 1 0 o o o o0 0 1 -1 Pwvi Pvs
o 0 -1 -1 1 1 0 0 0 0
“ 0o o0 0 o -1 1 1 -1 0 0
0o o0 0 o 0o o0 0 1 0 -1
0 0 -2 1 0 0 0 0 291 -1

Pv,

For g = 2, rank R(Ws, p) = 2|V| — 3, hence (Ws, p) is rigid in (3. For
g # 2, rank R(Ws, p) = |E| = 2|V| — 2, hence (W, p) is minimally rigid
in (2.

q
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A flexible example in 65

Define p to be the placement of the triangle K3 in @ where for
0O<a<land b>0,

Pv, = (070)7 Pv, = (170)7 Pv; = (aa b)

The altered rigidity matrix I%(K3, p):

(Vlvl) (V172) (Vzvl) (V272) (V371) (V372)
%02} _1 0 1 O 0 O
vivs —a97t  —pa-t 0 0 2971 b1
- 0 0  (1—a)9 ! —pol _(1-a) ! pi-l

For any g € (1,00), rank R(K3s, p) = |E| = 3, hence (K3, p) is
independent in £2. As |E| = 2|V| — 3 then (K3, p) is rigid in /2 if and
only if g = 2.
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A really weird flexible example in 2
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A really weird flexible example in 2
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A really weird flexible example in 2

// \\
/ N
, \
, \
, \
| \
|
I
|
1
I
/
1
|
I
|
I
I
\
1
' /
N /
\
N 7
~ //



Frameworks in normed spaces

A really weird flexible example in 2



Frameworks in normed spaces

A really weird flexible example in 2



Frameworks in normed spaces

A really weird flexible example in 2



Frameworks in normed spaces

A really weird flexible example in 2



Frameworks in normed spaces

A really weird flexible example in 2



Frameworks in normed spaces

A really weird flexible example in 2



Frameworks in normed spaces

A really weird flexible example in 2



Frameworks in normed spaces

A really weird flexible example in 2



Frameworks in normed spaces

A really weird flexible example in 2



Frameworks in normed spaces

A really weird flexible example in 2



Frameworks in normed spaces

A really weird flexible example in 2



Frameworks in normed spaces

A really weird flexible example in 2



Frameworks in normed spaces

A really weird flexible example in 2

s \\
// N
/ \
, \
h \
, \
|
I
|
1
1
|
1
1

[
I

[
\

I
| \
\

\ //
\
N 7
\\ //



Frameworks in normed spaces

A really weird flexible example in 2

~
// N
, \

, \
h \
| \

|
I

|
|

|
|

|
|

I
|
\ \

\

\ /I
N /
AN ,

-



Frameworks in normed spaces

A really weird flexible example in 2
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Rigidity in the plane

Theorem (Pollaczek-Geiringer (1927))

G is minimally rigid in €3 if and only if G is (2, 3)-tight.

Theorem (Kitson and Power (2014))

For g € [1,2) U (2,00], G is minimally rigid in Zf, if and only if G is
(2,2)-tight.

Theorem (D. (2020))

If X is non-Euclidean, G is minimally rigid in X if and only if G is
(2,2)-tight.




Graph operations

Strict convexity and smoothness

A normed space X with unit ball B is
(i) strictly convex if B is strictly convex, and
(i) smooth if the boundary of B is a differentiable manifold.

Equivalently, a normed space X is

(i) strictly convex if x — (@ is injective on the set of smooth points,
and

(ii) smooth if every non-zero point in X is smooth.

Importantly, X is strictly convex and smooth if and only if x — ¢ is a
homeomorphism from X to X*.

For d > 2, (3 is strictly convex and smooth for g € (1,00), but neither
for g € {1, 00}.




Graph operations

0- and l-extensions

o = AN e - D

Figure: Examples a 3-dimensional O-extension (left) and a 3-dimensional
1-extension (right).

@ d-dimensional 0-extension: Add new vertex connected to d vertices.

@ d-dimensional 1-extension: Split edge with new vertex and then
connect new vertex to d — 1 others.

d-dimensional 0- and 1-extensions preserve independence (resp. rigidity)
in strictly convex and smooth normed spaces.




Graph operations

Vertex splitting

Figure: A 3-dimensional vertex split.

d-dimensional vertex split: Split vertex in two, attach d — 1 neighbours to
both copies, and then share the remaining edges out between the copies.

d-dimensional vertex splitting preserves independence (resp. rigidity) in
strictly convex and smooth normed spaces.




Graph operations

Graph substitution

Figure: A vertex-to-K, substitution at the center vertex of Ws. This operation
will preserve rigidity in any non-Euclidean 2-dimensional normed space.

Vertex-to-H substitution: Replace vertex with a copy of a graph H.

Let X be a d-dimensional normed space and G’ be a vertex-to-H
substitution of G. If G and H are both independent in X then G’ is
independent in X. If k(X) = d and H is minimally rigid, then G’ is
minimally rigid in X if and only if G is minimally rigid in X.




Graph operations

Coning operation

Coning: Add a new vertex connected to every vertex.

Let G’ be obtained from G by a coning operation. If G is independent in
€§’, then G’ is independent in €g+1 for any q € (1,00). Furthermore, if G
is minimally rigid in ég, then G’ is minimally rigid in Eg“‘l if and only if
q=2.




Graph operations
Bracing operation

k-vertex bracing: Add two vertices connected to k vertices and each
other.

Let G’ be obtained from G by a 2d-vertex bracing operation. If G is
independent in ég then G’ is independent in Zg“ for any
g € (1,2) U (2,0).

The graph Kag is minimally rigid in £3 for all g € (1,2) U (2, c0).




Classes of independent and rigid graphs
Important conjectures
The graph Kaq is rigid in every d-dimensional normed space.

The latter conjecture is known to be true for:

@ Any smooth ¢, space.

e dim X = 2; D. (2020).

@ The 3-dimensional cylinder normed space; Kitson and Levene (2020).
("]

The 4-dimensional hypercyclinder normed space; Kitson and Levene
(2020).

Open question: does every normed space have a rigid graph?

Let X be a normed space with d = k(X) = dim X. Then G is minimally
rigid in X if and only if G is (d, d)-tight.




Classes of independent and rigid graphs
Degree bounded graphs

Let G be a connected graph with §(G) < d +1 and A(G) < d + 2 for
any d > 3. Then for g € (1,2) U (2,00), the graph G is independent in
(¢ if and only if G is (d, d)-sparse.

Let X be a strictly convex and smooth 3-dimensional normed space. If
G = (V,E) is a graph where |E'| < 1(5|V'| — 7) for all subgraphs with
at least one edge, then G is independent in X.




Classes of independent and rigid graphs
Triangulations of surfaces

For any triangulation G = (V/, E) of a compact surface S we have
3x(5) =3|V| - |E|
where x(S) is the Euler characteristic of S.

S RORENERIE
Sphere 2 6
Torus of genus g | 2-2g 6(1-g)
Projective plane 1 3




Classes of independent and rigid graphs

Triangulations of the sphere

Theorem (Steinitz and Rademacher (1934))

Every triangulation of the sphere can be formed from Ky by
3-dimensional vertex-splitting.

Theorem

| \

Let X be a strictly convex and smooth 3-dimensional normed space.
Then any triangulation of the sphere is independent in X.

| \

Corollary

Let X be a strictly convex and smooth 3-dimensional normed space.
Then any triangulation of the sphere is flexible in X.

A




Classes of independent and rigid graphs
Triangulations of the projective plane

Theorem (Barnette (1982))

Every triangulation of the projective plane can be formed from Kg or
K7 — K3 by 3-dimensional vertex-splitting.

For g € (1,2) U (2,¢), the graph K7 — K3 is minimally rigid in £3.

For g € (1,2) U (2,00), any triangulation of the projective plane is
minimally rigid in 63.




Thank you for listening!
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