End

Homothetic packings of centrally symmetric convex bodies

Sean Dewar

Johann Radon Institute (RICAM), Linz

December 3rd, 2020

Contact: sean.dewar@ricam.oeaw.ac.at

Acknowledgement: Supported by the Austrian Science Fund (FWF): P31888.

End

Centrally symmetric convex bodies

A set $C \subset \mathbb{R}^d$ is a *convex body* if it is convex and compact with a non-empty interior. Given a convex body C that is *centrally symmetric* (i.e. if $x \in C$ then $-x \in C$), we can define a norm:

$$\|x\|_{\mathcal{C}} := \inf\{\lambda > 0 : x \in \lambda \mathcal{C}\}.$$

For a centrally symmetric convex body C:

- C is smooth if $\|\cdot\|_C$ is differentiable at every non-zero point. Example: rounded square.
- *C* is *strictly convex* if $\|\cdot\|_C$ is a strictly convex function. Example: intersection of two overlapping unit discs.
- C is a regular symmetric body if it is both smooth and strictly convex. Examples: discs, ℓ_p unit ball (1

The support of x w.r.t. C is the vector $\varphi_C(x) \in \mathbb{R}^d$ that is the derivative of $\frac{1}{2} \| \cdot \|_C^2$ at x. We note $\varphi_C(0) = 0$ and $\varphi_C(\lambda x) = \lambda \varphi_C(x)$ for all $\lambda \in \mathbb{R}$ and $x \in \mathbb{R}^d$. If C is regular symmetric then the map $x \mapsto \varphi_C(x)$ is a well-defined homeomorphism from \mathbb{R}^d to itself.

Homothetic packings

Let $C \subset \mathbb{R}^d$ be a centrally symmetric convex body. A *homothetic* packing of C, or C-packing for short, is a set $P := \{C_v : v \in V\}$ where

- for each $v \in V$, $C_v = r_v C + p_v$ for some $r_v > 0$ and $p_v \in \mathbb{R}^d$, and
- for each distinct pair $v, w \in V$, the interiors of C_v and C_w are disjoint.

Any C-packing is uniquely determined by its placement $p := (p_v)_{v \in V}$ and radii $r := (r_v)_{v \in V}$.

Contact graphs

We define the *contact graph of* P to be G = (V, E), where $vw \in E$ if and only if $v \neq w$ and $C_v \cap C_w \neq \emptyset$. We note that for each distinct pair $v, w \in V$ we have

$$\|p_v-p_w\|_C\geq r_v+r_w,$$

with equality if and only if $vw \in E$.

If P = (G, p, r) is a C-packing and $\|\cdot\|_C$ is differentiable at each point of $\{p_v - p_w : vw \in E\}$, then P is a *well-positioned* C-packing.

Flexes and stresses of packings

Let $C \subset \mathbb{R}^d$ be a centrally symmetric convex body and P = (G, p, r) a *C*-packing.

• A flexible motion of P is a continuous path $\alpha : [0,1] \to \mathbb{R}^{d|V|}$ where

$$\|\alpha_v(t) - \alpha_w(t)\| \ge r_v + r_w$$

with equality if and only if $vw \in E$. If for each $t \in [0, 1]$ there exists an isometry $f : \mathbb{R}^d \to \mathbb{R}^d$ with respect to $\|\cdot\|_C$ such that $\alpha(t) = f \circ p$, then α is *trivial*.

• Given P is well-positioned, an *infinitesimal flex* of P is a map $u: V \to \mathbb{R}^d$ where

$$\varphi_C(p_v-p_w).(u_v-u_w)=0$$

for all $vw \in E$. If there exists an infinitesimal isometry $f : \mathbb{R}^d \to \mathbb{R}^d$ with respect to $\| \cdot \|_C$ such that $u = f \circ p$, then u is *trivial*

• Given P is well-positioned, an *equilibrium stress* of P is a map $a: E \to \mathbb{R}$ where

$$\sum_{w\in N(v)}a_{vw}\varphi_C(p_v-p_w)=0$$

for all $v \in V$. We say *a* is *trivial* if $a_{vw} = 0$ for all $vw \in E$.

Sticky rigidity and independence

Let $C \subset \mathbb{R}^d$ be a centrally symmetric convex body and P = (G, p, r) a C-packing.

- *P* is *sticky rigid* if all flexible motions of *P* are trivial; otherwise *P* is *sticky flexible*.
- Given *P* is well-positioned, *P* is *infinitesimally sticky rigid* if all infinitesimal flexes of *P* are trivial; otherwise *P* is *infinitesimally sticky flexible*.
- Given *P* is well-positioned, *P* is *independent* or *stress-free* if all equilibrium stresses of *P* are trivial; otherwise *P* is *dependent* or *stressed*.

Theorem (D. 2019)

If P is infinitesimally sticky rigid then it is sticky rigid. If P is independent and sticky rigid then it is infinitesimally sticky rigid.

Sparsity of generic circle packings

For $k, \ell \in \mathbb{N}$, graph G = (V, E) is (k, ℓ) -sparse if $|E'| \le k|V'| - \ell$ for all subgraphs H = (V', E') with $E' \ne \emptyset$. If $|E| = k|V| - \ell$ also, then G is (k, ℓ) -tight.

Theorem (Connelly-Gortler-Theran 2019)

The following holds for any disc packing P = (G, p, r) where r is generic (i.e. $\{r_v : v \in V\}$ is algebraically independent):

(i) G is (2,3)-sparse and P is independent.

(ii) G is (2,3)-tight if and only if P is sticky rigid.

The result will also hold for any regular symmetric body C that is the linear transform of a disc, with some alteration on the definition of generic.

Sparsity of almost all packings

Theorem

Let $C \subset \mathbb{R}^2$ be a regular symmetric body that is not the linear transform of a disc. Then for almost all radii $r \in \mathbb{R}_{>0}^{|V|}$, the following holds for any *C*-packing P = (G, p, r):

- (i) G is (2, 2)-sparse.
- (ii) Given k := 2|V| |E| 1, if $\|\cdot\|_C$ is C^k -differentiable on $\mathbb{R}^2 \setminus \{0\}$ then P is independent.
- (iii) G is (2,2)-tight if and only if P is infinitesimally sticky rigid.

Sketch of proof

Let C be a regular symmetric body and $\|\cdot\|_C$ be C^k -differentiable.

• First, prove that every C-packing with contact graph G has no non-trivial edge-length equilibrium stress, i.e. an equilibrium stress $a: E \to \mathbb{R}$ where

$$\sum_{vw\in E}a_{vw}\|p_v-p_w\|_C=0.$$

- Next, prove the set of all C-packings with contact graph G is a C^k -differentiable manifold of dimension 3|V| |E|.
- Now apply Sard's theorem to show that for almost all radii r ∈ ℝ^{|V|}_{>0}, the set S_{G,C}(r) of all C-packings with contact graph G and radii r is either empty or a C^k-differentiable manifold of dimension 2|V| |E| if k ≥ 2|V| |E| 1.
- If we now choose r such that the above holds for all graphs G with vertex set V, then any C-packing with radii r cannot have contact graph where |E| > 2|V| 2, since

$$2 \leq \dim S_{G,C}(r) = 2|V| - |E|.$$

Technicalities and limitations

- If C is not strictly convex then there exists a C-packing with a non-trivial edge-length equilibrium stress. It follows that the method cannot be used unless C is a regular symmetric body, as we require some smoothness for the manifolds we obtain.
- Sard's theorem limits our ability to determine whether a C-packing with random radii is independent; will be true if k ≥ 2|V| − |E| − 1.

Figure: A homothetic square packing with an edge-length equilibrium stress.

Converse conjecture for generic circle packings

The following was originally conjectured by Connelly, Gortler and Theran.

Conjecture

Let G a (2,3)-sparse planar graph. Then there exists a disc packing with generic radii and contact graph G.

This is equivalent to:

Conjecture

Let G a (2,3)-sparse planar graph. Then there exists an independent disc packing with contact graph G.

Converse conjecture true for generic c. s. convex bodies

We denote by \mathcal{K}_2 the set of centrally symmetric convex bodies in \mathbb{R}^2 , and we denote by \mathcal{B}_2 the set of regular symmetric bodies in \mathbb{R}^2 . Their topologies are generated by the Hausdorff metric:

$$d_H(C,D) := \max\left\{\sup_{x\in C}\inf_{y\in D}\|x-y\|, \sup_{x\in D}\inf_{y\in C}\|x-y\|\right\}.$$

Lemma

For each (2, 2)-sparse planar graph G, there exists an open dense subset $\mathcal{G}_G \subset \mathcal{B}_2$ where the following holds; for every $C \in \mathcal{G}_G$, there exists an independent C-packing with contact graph G.

A subset is *comeagre* if it is the countable intersection of open dense sets.

- By the Baire Category Theorem, every comeagre subset of \mathcal{K}_2 is dense.
- \mathcal{B}_2 is a comeagre subset of \mathcal{K}_2 (Klee 59).

Theorem

There exists a comeagre subset $\mathcal{G} \subset \mathcal{K}_2$ where the following holds; for every (2,2)-sparse planar graph G and $C \in \mathcal{G}$, there exists an independent C-packing with contact graph G.

\mathcal{G}_{G} is an open subset of \mathcal{B}_{2}

Fix $C' \in \mathcal{G}_G$ with independent C-packing (G, p', r'). We first show that there exists an open neighbourhood $U \subset \mathcal{B}_2$ of C' and a continuous map

$$f: U \to \mathbb{R}^{2|V|} \times \mathbb{R}^{|V|}_{>0}, \ C \mapsto (p, r),$$

such that f(C') = (p', r') and if f(C) = (p, r) then (G, p, r) is a *C*-packing.

We now note that the map

$$\mathcal{B}_2 \times \mathbb{R}^2 \to \mathbb{R}^2, \ (\mathcal{C}, x) \mapsto \varphi_{\mathcal{C}}(x)$$

is continuous. It now follows that for a sufficiently small open neighbourhood $U' \subset U$ of C', we have that the C-packing (G, p, r) is independent for each $C \in U'$ and (p, r) = f(C).

\mathcal{G}_{G} is a dense subset of \mathcal{B}_{2} part 1: k-frames

Order the set V. For every graph G = (V, E) and $\phi = (\phi_{v,w})_{vw \in E, v < w} \in \mathbb{R}^{d|E|}$, we say (G, ϕ) is *independent* if for every map $a : E \to \mathbb{R}$ where

$$\sum_{w \in N(v)} a_{vw} \phi_{v,w} = 0$$

for each $v \in V$ (we set $\phi_{w,v} = -\phi_{v,w}$), we have that $a_{vw} = 0$ for all $vw \in E$.

Theorem (White-Whiteley 87)

Let $X \subset \mathbb{R}^{2|E|}$ be the subset of elements ϕ where (G, ϕ) is independent. Then either:

(i) G is
$$(d, d)$$
-sparse and X is an open dense subset of $\mathbb{R}^{2|E|}$, or

(ii) G is not (d, d)-sparse and $X = \emptyset$.

End

\mathcal{G}_{G} is a dense subset of \mathcal{B}_{2} part 2: slicing

Theorem (Schramm 90)

For every planar graph G and $C \in \mathcal{B}_2$ there exists a C-packing P with contact graph G.

Idea:

- Choose any $C \in \mathcal{B}_2$. By Schramm's result, there exists a *C*-packing P = (G, p, r). Note: we can assume that for every pair vw, v'w', the vectors $p_v p_w$ and $p_{v'} p_{w'}$ are linearly independent.
- By White and Whiteley's result, we can perturb the set
 (φ_C(p_v − p_w))_{vw∈E} to find sufficiently close φ ∈ ℝ^{2|E|} where (G, φ)
 is independent.
- By altering C at each of the points ±(p_v − p_w)/||p_v − p_w||_C, we can obtain sufficiently close C' to C with ||p_v − p_w||_C = ||p_v − p_w||_C and φ_{C'}(p_v − p_w), φ_{vw} linearly dependent for each vw ∈ E.
- Hence (G, p, r) is an independent C'-packing and $C' \in \mathcal{G}_G$.

Open questions

- Can we drop the requirement of central symmetry?
- Can similar methods be applied to packings where homotheticity is not required?
- It can be shown that any well-positioned homothetic square packing with random radii must also have a (2, 2)-sparse planar contact graph, though method does not extend to any other convex bodies. Is there a method of showing this is true for all convex polygons?
- If C is a regular symmetric body in ℝ² that isn't the linear transform of the disc and G is a (2, 2)-sparse planar graph, does there exist an independent C-packing with contact graph G? Important case: complete graph with four vertices.
- What can we say about packings in higher dimensions?

References

R. Connelly, S. Gortler, L. Theran, *Rigidity of sticky disks*, Proceedings of the Royal Society A, 475(2222) (2019).

S. Dewar,

Equivalence of continuous, local and infinitesimal rigidity in normed spaces, Discrete and Computational Geometry, (2019).

V. Klee,

Some new results on smoothness and rotundity in normed linear spaces, Mathematische Annalen 139 (1959), pp. 51–63.

O. Schramm,

Packing two-dimensional bodies with prescribed combinatorics and applications to the construction of conformal and quasiconformal mappings, Ph.D. thesis, Princeton, (1990).

N. White, W. Whiteley, *The Algebraic Geometry of Motions of Bar-and-Body Frameworks*, SIAM Journal on Algebraic Discrete Methods, 8(1) (1987), pp. 1–32.