Maximum likelihood threshold of a graph

Elizabeth Gross University of Hawai'i at Mānoa

Joint work with Seth Sullivant, North Carolina State University

October 29, 2020

Elizabeth Gross, UH Mānoa Maximum likelihood threshold of a graph

Gaussian graphical models

$$X = (X_1, X_2, X_3, X_4) \sim \mathcal{N}(0, \Sigma)$$

The non-edges of G record the conditional independence structure of X:

$$\begin{split} \mathbb{S}^m &= m \times m \text{ symmetric real matrices } \\ \mathbb{S}^m_{>0} &= \text{ pos. def. matrices in } \mathbb{S}^m \\ \mathbb{S}^m_{>0} &= \text{ psd matrices in } \mathbb{S}^m \end{split}$$

Let
$$G = (V, E)$$
 with $|V| = m$.

$$\mathcal{M}_{G} = \{ \Sigma \in \mathbb{S}_{>0}^{m} : (\Sigma^{-1})_{ij} = 0 \text{ for all} \\ i, j \text{ s.t. } i \neq j, ij \notin E \}$$

Definition

The centered **Gaussian graphical model** associated to the graph *G* is the set of all multivariate normal distributions $\mathcal{N}(0, \Sigma)$ such that $\Sigma \in \mathcal{M}_{\mathcal{G}}$.

Maximum likelihood estimation

Goal: Find Σ that best explains data

Observations: Y_1, \ldots, Y_n Sample covariance matrix: $S = \frac{1}{n} \sum_{i=1}^n Y_i Y_i^T$

If the MLE exists, it is the unique positive definite matrix $\boldsymbol{\Sigma}$ that satisfies:

$$\Sigma_{ij} = S_{ij}$$
 for $ij \in E$ and $i = j$
 $(\Sigma)_{ij}^{-1} = 0$ for $ij \notin E$ and $i \neq j$

When $n \ge m$, the MLE exists with probability one. What about the case when m >> n?

Question (Lauritzen)

For a given graph G what is the smallest n such that the MLE exists with probability one?

We call the smallest n such that the MLE exists with probably one (i.e. for generic data) the **maximum likelihood threshold**, or, **mlt**.

Proposition (Buhl 1993)

clique number of $G \leq mlt(G) \leq tree$ width of G + 1

• **Clique number:** $\omega(G) = \text{size of a largest}$ clique of *G* • **Chordal graph:** A graph with no induced cycle of length ≥ 4 . • **Chordal cover of** G = (V, E): A graph H = (V, E') such that *H* is chordal and $E \subseteq E'$. • **Tree width:** $\tau(G) = \min\{\omega(H) - 1 : H \text{ is a chordal cover of } G\}$.

We call the smallest n such that the MLE exists with probably one (i.e. for generic data) the **maximum likelihood threshold**, or, **mlt**.

Proposition (Buhl 1993)

clique number of $G \leq mlt(G) \leq tree$ width of G + 1

Notice that these bounds can be far away from each other. Consider for example, $G = Gr_{k_1,k_2}$, the $k_1 \times k_2$ grid graph:

 $\omega(G) = \text{size of largest clique} = 2$ $\tau(G) = \text{tree width} = \min(k_1, k_2)$

Geometry of Gaussian graphical models

$$\circ \ |V| = m \quad \circ \mathbb{S}^m := m \times m \text{ symmetric real matrices} \\ \circ \mathbb{S}^m_{>0} := \text{pos. def. matrices in } \mathbb{S}^m \quad \circ \mathbb{S}^m_{\geq 0} := \text{psd matrices in } \mathbb{S}^m$$

 Let π_G be the projection map that extracts the entries of Σ corresponding to the vertices and edges of G:

$$\pi_G: \mathbb{S}^m \to \mathbb{R}^{V+E}$$

$$\phi_G(\Sigma) = (\sigma_{ii})_{i \in V} \oplus (\sigma_{ij})_{ij \in E}$$

$$G: \begin{array}{c} 1 & 2 & 3 \\ \phi_G \left(\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 3 & 2 & 1 \end{bmatrix} \right) \\ = (1, 1, 1, 2, 2)^T$$

- Cone of sufficient statistics: $C_G := \phi_G(\mathbb{S}^m_{>0})$.
- For a given $S \in \mathbb{S}_{\geq 0}^m$, the MLE exists if and only if $\phi_G(S) \in int(\mathcal{C}_G)$.
- C_G is the convex dual to the cone of concentration matrices \mathcal{K}_G

Uhler, Geometry of maximum likelihood estimation in Gaussian graphical models (2012)

Light orange: \mathcal{K}_G , cone of concentration matrices, **Purple**: \mathcal{K}_G^{-1} , cone of covariance matrices, **Gray**: Set of positive definite completions of *S*, **Dark orange**: \mathcal{C}_G , Cone of sufficient statistics

Blue: $S(m,n) \cap \mathbb{S}_{\geq 0}$, Set of $m \times m$ positive semi-definite symmetric matrices of rank $\leq n$

★ Ξ ► < Ξ ►</p>

Blue: $S(m, n) \cap \mathbb{S}_{\geq 0}$, Set of $m \times m$ positive semi-definite symmetric matrices of rank $\leq n$

Blue: $S(m,n) \cap \mathbb{S}_{\geq 0}$, Set of $m \times m$ positive semi-definite symmetric matrices of rank $\leq n$

Blue: $S(m, n) \cap \mathbb{S}_{\geq 0}$, Set of $m \times m$ positive semi-definite symmetric matrices of rank $\leq n$

Blue: $S(m, n) \cap \mathbb{S}_{\geq 0}$, Set of $m \times m$ positive semi-definite symmetric matrices of rank $\leq n$

Let $S(m,n) := \{\Sigma \in \mathbb{S}^m : \operatorname{rank}(\Sigma) \le n\}.$

The rank of a graph G is the minimal n such that $\dim \phi_G(S(m, n)) = \dim C_G = |V| + |E|$

Proposition (Uhler 2012)

 $mlt(G) \leq rank(G)$

Goal: Connect the rank of a graph to combinatorial rigidity theory.

Method: Use algebraic matroids, in particular compare the rigidity matroid and the symmetric minor matroid.

・ロッ ・雪 ・ ・ ヨ ・ ・

The study of rigidity deals with with **bar and joint frameworks**. A **framework** is a graph G embedded in \mathbb{R}^n .

Rigid in \mathbb{R}^2

A graph *G* is called **rigid** if, for generic points $\mathbf{p}_1, \ldots, \mathbf{p}_m \in \mathbb{R}^n$, the only continuous deformations that preserve the distances $||\mathbf{p}_i - \mathbf{p}_j||_2$ for $ij \in E$ are rotations and translations.

The rigidity matroid

A matroid M is a pair (E, I) where E is a finite set of elements, called the ground set and I is a collection of subsets of E, called the independent sets.

Consider the map $\psi_n : \mathbb{R}^{n \times m} \to \mathbb{R}^{m(m-1)/2}$

$$(\mathbf{p}_1,\ldots,\mathbf{p}_m)\mapsto (||\mathbf{p}_i-\mathbf{p}_j||_2^2 : 1 \leq i < j \leq m).$$

This is polynomial map with an associated matroid:

- E = columns of the Jacobian at a generic point
- *I* = all collections of independent columns

This matroid is called the **n** - **dimensional generic rigidity matroid**, denoted $\mathcal{A}(n)$.

- Spanning sets in the matroid are called (generically infinitesimally) rigid graphs.
- Bases in the matroid are called (generically) isostatic graphs.

イロト イポト イヨト イヨト 二日

Laman's Theorem

- To be a spanning set in $\mathcal{A}(n)$ must have $nm \binom{n+1}{2} \leq |E|$.
- Conversely, to be independent must have $nm \binom{n+1}{2} \ge |E|$.

Theorem (Laman 1970)

A graph G = (V, E) is a basis (isostatic) in the rigidity matroid A(2) if and only if

- |E| = 2m 3, and
- For every induced subgraph $G_W = (W, E_W), |E_W| \le 2|W| 3.$

14 E N 14 E N

Back to the rank of a graph

Blue: $S(m,n) \cap \mathbb{S}_{\geq 0}$, Set of $m \times m$ positive semi-definite symmetric matrices of rank $\leq n$

Symmetric minor matroid

Definition

Let $I \subset \mathbb{K}[x_1, \ldots, x_r]$ be a prime ideal. This defines an **algebraic** matroid with ground set $\{x_1, \ldots, x_r\}$, and $K \subseteq \{x_1, \ldots, x_r\}$ an independent set if and only if $I \cap \mathbb{K}[K] = \langle 0 \rangle$.

S(m, n) is an algebraic set whose defining ideal I_n is generated by the $(n + 1) \times (n + 1)$ -minors of a $m \times m$ symmetric matrix $\Sigma = (\sigma_{ij})$.

The set S(m, n) has an associated algebraic matroid:

- ground set = $\{\sigma_{ij} : i < j\}$,
- independent sets= graphs G such that $\pi_G(S(m, n)) = \mathbb{R}^{V+E}$

This matroid is called the rank *n* symmetric minor matroid

Remark

If G is an independent set in the rank n symmetric minor matroid then $rank(G) \le n$, and consequently, $mlt(G) \le n$. (Uhler 2012)

Rigidity Matroid \cong Symmetric Minor Matroid

Theorem (Gross-Sullivant)

- A graph G has rank(G) = n if and only if G is an independent set in the (n - 1)-dimensional rigidity matroid $\mathcal{A}(n - 1)$ and not an independent set in $\mathcal{A}(n - 2)$.
- The (n-1)-dimensional rigidity matroid $\mathcal{A}(n-1)$ is isomorphic to the rank n symmetric minor matroid.

Proof.

Compare the Jacobian of the map

$$(\mathbf{p}_1, \ldots, \mathbf{p}_m) \mapsto (||\mathbf{p}_i - \mathbf{p}_j||_2^2 : 1 \le i < j \le m)$$

to the Jacobian of the map

$$(\mathbf{p}_1, \ldots, \mathbf{p}_m) \mapsto (\mathbf{p}_i \cdot \mathbf{p}_j : 1 \le i < j \le m)$$

This means that we can bound the mlt of a graph by checking whether *G* is an independent set in $\mathcal{A}(n-1)$.

Corollary (Laman's Theorem)

Let G = (V, E) be a graph, if for all subgraphs G' = (V', E') of G $\#E' \le 2(\#V') - 3,$

then $mlt(G) \leq 3$.

Let G be a graph and $r \in \mathbb{N}$. The r-core of G is the graph obtained by successively removing vertices of G of degree < r.

Theorem (Gross-Sullivant, Ben-David)

Let G have an empty n-core, then $rank(G) \leq n$.

 \Rightarrow mlt(Gr_{k_1,k_2}) = 3

Let *G* be a graph and $r \in \mathbb{N}$. The *r*-core of *G* is the graph obtained by successively removing vertices of *G* of degree < r.

Theorem (Gross-Sullivant, Ben-David)

$$\Rightarrow$$
 mlt(Gr_{k_1,k_2}) = 3

Let G be a graph and $r \in \mathbb{N}$. The r-core of G is the graph obtained by successively removing vertices of G of degree < r.

Theorem (Gross-Sullivant, Ben-David)

$$\Rightarrow$$
 mlt(Gr_{k_1,k_2}) = 3

Let G be a graph and $r \in \mathbb{N}$. The r-core of G is the graph obtained by successively removing vertices of G of degree < r.

Theorem (Gross-Sullivant, Ben-David)

$$\Rightarrow$$
 mlt(Gr_{k_1,k_2}) = 3

Let G be a graph and $r \in \mathbb{N}$. The r-core of G is the graph obtained by successively removing vertices of G of degree < r.

Theorem (Gross-Sullivant, Ben-David)

Let G have an empty n-core, then $rank(G) \leq n$.

 \Rightarrow mlt(Gr_{k_1,k_2}) = 3

4 B 6 4 B 6

Let G be a graph and $r \in \mathbb{N}$. The r-core of G is the graph obtained by successively removing vertices of G of degree < r.

Theorem (Gross-Sullivant, Ben-David)

$$\Rightarrow$$
 mlt(Gr_{k_1,k_2}) = 3

Let G be a graph and $r \in \mathbb{N}$. The r-core of G is the graph obtained by successively removing vertices of G of degree < r.

Theorem (Gross-Sullivant, Ben-David)

Let G have an empty n-core, then $rank(G) \leq n$.

 \Rightarrow mlt(Gr_{k_1,k_2}) = 3

伺 と く ヨ と く ヨ と …

Theorem (Gross-Sullivant)

If G is a planar graph then $mlt(G) \leq 4$.

Proof.

- Cauchy's theorem implies that every edge graph of simplicial 3-polytope is rigid.
- Edge count \rightarrow G isostatic \rightarrow rank(G) \leq 4
- Every planar graph is a subgraph of a graph of a simplicial 3-polytope.

Theorem (Gross-Sullivant 2018)

Let G be a graph and V_1, \ldots, V_k a partition of the vertices of G such that

• for all i, V_i is an independent set of G and

• for all $i \neq j$, $G(V_i, V_j)$ has no cycles.

Then $rank(G) \leq k$.

4 B 6 4 B 6

The **score matching estimator** is a computationally efficient and consistent estimator for Gaussian graphical models (Hyvärinen 2005, Forbes–Lauritzen 2014).

Definition

We call the smallest *n* such that the scoring matching exists with probably one (i.e. for generic data) the **scoring matching threshold**, or, **smt**.

Theorem (Gross-Sullivant)

Let G be a graph. Then

```
smt(G) = rank(G).
```

伺下 イヨト イヨト

- How are the boundary components of C_G related to the circuits in the rigidity matroid?
- Maximum likelihood threshold has a natural rigidity theory analogue: are they equivalent?
- Determine the score matching threshold for Gaussian graphical models with symmetries. Can the same methods be used here?
- How different can the maximum likelihood threshold be from the weak maximum likelihood threshold?

Thank you

- G. Blekherman and R. Sinn. Maximum likelihood threshold and generic completion rank of graphs. *Discrete & Computational Geometry* 61, no. 2 (2019): 303-324.
- D. I. Bernstein, G. Blekherman, and R. Sinn. Typical and generic ranks in matrix completion. *Linear Algebra and its Applications* 585 (2020): 71-104.
- S. Buhl. On the existence of maximum likelihood estimators for graphical Gaussian models. *Scand. J. Statist.* **20** (1993), no. 3, 263–270.
- **E.** Gross and S. Sullivant. The maximum likelihood threshold of a graph. Bernoulli, 24 no. 1 (2018) 386-407.
- S. Lauritzen. *Graphical models*. Oxford Statistical Science Series **17**, Oxford University Press, New York, 1996.
- C. Uhler. Geometry of maximum likelihood estimation in Gaussian graphical models. Ann. Statist. **40** (2012), no. 1, 238–261.