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Gaussian graphical models

X3

X4

X2
X1

X = (X1,X2,X3,X4) ∼ N (0,Σ)

The non-edges of G record
the conditional independence
structure of X :

X1 ⊥⊥ X4 | (X2,X3)

X1 ⊥⊥ X3 | (X2,X4)

⇒ (Σ−1)14 = 0, (Σ−1)13 = 0.

Sm=m ×m symmetric real matrices
Sm>0= pos. def. matrices in Sm
Sm≥0= psd matrices in Sm

Let G = (V ,E ) with |V | = m.

MG = {Σ ∈ Sm>0 : (Σ−1)ij = 0 for all

i , j s.t. i 6= j , ij /∈ E}

Definition

The centered Gaussian graphical
model associated to the graph G is
the set of all multivariate normal
distributions N (0,Σ) such that
Σ ∈MG .
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Maximum likelihood estimation

Goal: Find Σ that best explains data

Observations: Y1, . . . ,Yn

Sample covariance matrix: S = 1
nΣn

i=1YiY
T
i

If the MLE exists, it is the unique positive definite matrix Σ that
satisfies:

Σij = Sij for ij ∈ E and i = j

(Σ)−1
ij = 0 for ij /∈ E and i 6= j

When n ≥ m, the MLE exists with probability one. What about
the case when m >> n?

Question (Lauritzen)

For a given graph G what is the smallest n such that the MLE
exists with probability one?
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Maximum likelihood threshold

Definition

We call the smallest n such that the MLE exists with probably one (i.e.
for generic data) the maximum likelihood threshold, or, mlt.

Proposition (Buhl 1993)

clique number of G ≤ mlt(G ) ≤ tree width of G + 1

◦ Clique number: ω(G ) = size of a largest
clique of G

◦ Chordal graph: A graph with no induced cycle
of length ≥ 4.

◦ Chordal cover of G = (V ,E ): A graph H =
(V ,E ′) such that H is chordal and E ⊆ E ′.

◦ Tree width: τ(G ) =
min{ω(H)− 1 : H is a chordal cover of G}.
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FIG. 7. Graph G (left) and minimal chordal cover of G (right).

Steffen Lauritzen during his lecture at the “Durham Symposium on Mathematical
Aspects of Graphical Models” in 2008. As a preparation, we first discuss the exis-
tence of the MLE for the graph G on six vertices shown in Figure 7. The graph G
also has q = 2 and q∗ = 4, and is the first example for which we can prove that the
bound n ≥ q∗ for the existence of the MLE with probability one is not tight and
that the MLE can exist with probability one, even when the number of observations
equals the treewidth.

THEOREM 5.1. The MLE on the graph G (Figure 7, left) exists with probabil-
ity one for n = 3 observations.

PROOF. We compute the ideal IG,3 by eliminating the variables s13, s15, s16,
s24, s26, s34, s35 from the ideal of 4 × 4 minors of the matrix S given in (7). This
results in the zero ideal, which by Theorem 3.3 completes the proof. !

REMARK 5.2. Theorem 5.1 is equivalent to the following purely algebraic
statement. Let

S =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 s12 s13 s14 s15 s16
s12 1 s23 s24 s25 s26
s13 s23 1 s34 s35 s36
s14 s24 s34 1 s45 s46
s15 s25 s35 s45 1 s56
s16 s26 s36 s46 s56 1

⎞

⎟⎟⎟⎟⎟⎟⎠
∈ S6

≽0(7)

with rank(S) = 3. Then there exist x, y, a, b, c, d, e ∈ R such that

S′ =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 s12 a s14 b c
s12 1 s23 x s25 y
a s23 1 d e s36
s14 x d 1 s45 s46
b s25 e s45 1 s56
c y s36 s46 s56 1

⎞

⎟⎟⎟⎟⎟⎟⎠
∈ S6

≻0.

So any partial matrix of rank 3 with specified entries at all positions corresponding
to edges in G can be completed to a positive definite matrix.

ω(G) = 3, τ(G) = 3

Chordal cover of G :
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Maximum likelihood threshold

Definition

We call the smallest n such that the MLE exists with probably one (i.e.
for generic data) the maximum likelihood threshold, or, mlt.

Proposition (Buhl 1993)

clique number of G ≤ mlt(G ) ≤ tree width of G + 1

Notice that these bounds can be far away from each other. Consider for
example, G = Grk1,k2 , the k1 × k2 grid graph:

Basic Facts

Note that the bounds

!(G)  mlt(G)  ⌧(G) + 1.

are far from each other in many situations.

Proposition

[Buhl 1993] For m-cycle Cm mlt(Cm) = 3.
mlt(G) = 1 if and only if G has no edges.
mlt(G) = 2 if and only if G has no cycles.
mlt(G) = m if and only if G = Km.

Seth Sullivant (NCSU) Maximum Likelihood Threshold August 28, 2014 8 / 25

ω(G ) = size of largest clique = 2

τ(G ) = tree width = min(k1, k2)
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Geometry of Gaussian graphical models

◦ |V | = m ◦ Sm := m ×m symmetric real matrices
◦ Sm>0 := pos. def. matrices in Sm ◦ Sm≥0 := psd matrices in Sm

Let πG be the projection map that
extracts the entries of Σ corresponding
to the vertices and edges of G :

πG : Sm → RV+E

φG (Σ) = (σii )i∈V ⊕ (σij)ij∈E

G : 1 2 3

φG

 1 2 3
2 1 2
3 2 1


= (1, 1, 1, 2, 2)T

Cone of sufficient statistics: CG := φG (Sm>0).

For a given S ∈ Sm≥0, the MLE exists if and only if φG (S) ∈ int(CG ).

CG is the convex dual to the cone of concentration matrices KG
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Geometry of maximum likelihood estimation

GEOMETRY OF ML ESTIMATION IN GAUSSIAN GRAPHICAL MODELS 241

3. Geometry of maximum likelihood estimation in Gaussian graphical
models. Every concentration matrix (i.e., inverse of a covariance matrix) in a
Gaussian graphical model satisfies the undirected pairwise Markov property (1).
The set of all concentration matrices in the model is a convex cone

KG := {K ∈ Sm
≻0 | Kij = 0,∀(i, j) /∈ E}.

Note again that the edge set contains all self-loops, that is, (i, i) ∈ E for all i ∈ [m].
By taking the inverse of every matrix in KG, we get the set of all covariance ma-
trices in the model denoted by K−1

G . This is an algebraic variety intersected with
the positive definite cone Sm

≻0 and shown in purple in Figure 1.
In a Gaussian graphical model, the G-partial matrix SG is a minimal sufficient

statistic of a sample covariance matrix S (e.g., [17, 21]). So Theorem 2.1 has the
following geometric interpretation also explained in Figure 1:

COROLLARY 3.1. The MLEs !̂ and K̂ exist for a given sample covariance
matrix S if and only if

fiberG(S) := {! ∈ Sm
≻0 | !G = SG}

is nonempty, in which case fiberG(S) intersects K−1
G in exactly one point, namely

the MLE !̂.

So the MLE !̂ has an algebraic description in terms of the sufficient statis-
tic SG, that is, !̂ can be represented as a solution to polynomial equations in the

FIG. 1. Geometry of maximum likelihood estimation in Gaussian graphical models. The cone KG

consists of all concentration matrices in the model, and K−1
G is the corresponding set of covariance

matrices. The cone of sufficient statistics CG is defined as the projection of Sm
≻0 onto the edge set

of G. It is dual to KG. Given a sample covariance matrix S, fiberG(S) consists of all positive definite
completions of the G-partial matrix SG, and it intersects K−1

G in at most one point, namely the
MLE !̂.

Uhler, Geometry of maximum likelihood estimation in Gaussian graphical models (2012)

Light orange: KG , cone of concentration matrices, Purple: K−1
G , cone of

covariance matrices, Gray: Set of positive definite completions of S ,

Dark orange: CG , Cone of sufficient statistics
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Geometry of maximum likelihood estimation

Blue: S(m, n) ∩ S≥0, Set of m ×m positive semi-definite symmetric matrices

of rank ≤ n

Elizabeth Gross, UH Mānoa Maximum likelihood threshold of a graph



Geometry of maximum likelihood estimation

Blue: S(m, n) ∩ S≥0, Set of m ×m positive semi-definite symmetric matrices

of rank ≤ n
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Rank of a graph

Definition

Let S(m, n) := {Σ ∈ Sm : rank(Σ) ≤ n}.

The rank of a graph G is the minimal n such that
dimφG (S(m, n)) = dim CG = |V |+ |E |

Proposition (Uhler 2012)

mlt(G ) ≤ rank(G )

Goal: Connect the rank of a graph to combinatorial rigidity theory.

Method: Use algebraic matroids, in particular compare the rigidity
matroid and the symmetric minor matroid.
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Combinatorial Rigidity Theory

The study of rigidity deals with with bar and joint frameworks.
A framework is a graph G embedded in Rn.

Combinatorial Rigidity Theory

Consider the map  n : Rn⇥m ! Rm(m�1)/2

(p1, . . . , pm) 7! (kpi � pjk2
2 : 1  i < j  m)

Let Jn = I(im( n)) ✓ K[xij : 1  i < j  m].
The resulting matroid A(n) is the n-dimensional generic rigidity
matroid.
Spanning sets in the matroid are called (generically infinitesimally)
rigid graphs.
Bases in the matroid are called (generically) isostatic graphs.

Seth Sullivant (NCSU) Maximum Likelihood Threshold August 28, 2014 13 / 25Rigid in R2

A graph G is called rigid if, for
generic points p1, . . . ,pm ∈ Rn, the
only continuous deformations that
preserve the distances ||pi − pj ||2 for
ij ∈ E are rotations and translations.

Not rigid in R2

Elizabeth Gross, UH Mānoa Maximum likelihood threshold of a graph



The rigidity matroid

A matroid M is a pair (E , I ) where E is a finite set of elements, called
the ground set and I is a collection of subsets of E , called the
independent sets.

Consider the map ψn : Rn×m → Rm(m−1)/2

(p1, . . . ,pm) 7→ (||pi − pj ||22 : 1 ≤ i < j ≤ m).

This is polynomial map with an associated matroid:

E = columns of the Jacobian at a generic point

I = all collections of independent columns

This matroid is called the n - dimensional generic rigidity matroid,
denoted A(n).

Spanning sets in the matroid are called (generically infinitesimally)
rigid graphs.

Bases in the matroid are called (generically) isostatic graphs.
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Laman’s Theorem

To be a spanning set in A(n) must have nm −
(n+1

2

)
≤ |E |.

Conversely, to be independent must have nm −
(n+1

2

)
≥ |E |.

Theorem (Laman 1970)

A graph G = (V ,E ) is a basis (isostatic) in the rigidity matroid
A(2) if and only if

|E | = 2m − 3, and

For every induced subgraph
GW = (W ,EW ), |EW | ≤ 2|W | − 3.

Combinatorial Rigidity Theory

Consider the map  n : Rn⇥m ! Rm(m�1)/2

(p1, . . . , pm) 7! (kpi � pjk2
2 : 1  i < j  m)

Let Jn = I(im( n)) ✓ K[xij : 1  i < j  m].
The resulting matroid A(n) is the n-dimensional generic rigidity
matroid.
Spanning sets in the matroid are called (generically infinitesimally)
rigid graphs.
Bases in the matroid are called (generically) isostatic graphs.
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Elizabeth Gross, UH Mānoa Maximum likelihood threshold of a graph



Back to the rank of a graph

Blue: S(m, n) ∩ S≥0, Set of m ×m positive semi-definite symmetric matrices

of rank ≤ n
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Symmetric minor matroid

Definition

Let I ⊂ K[x1, . . . , xr ] be a prime ideal. This defines an algebraic
matroid with ground set {x1, . . . , xr}, and K ⊆ {x1, . . . , xr} an
independent set if and only if I ∩K[K ] = 〈0〉.

S(m, n) is an algebraic set whose defining ideal In is generated by the
(n + 1)× (n + 1)-minors of a m ×m symmetric matrix Σ = (σij).

The set S(m, n) has an associated algebraic matroid:

ground set = {σij : i < j},
independent sets= graphs G such that πG (S(m, n)) = RV+E

This matroid is called the rank n symmetric minor matroid

Remark

If G is an independent set in the rank n symmetric minor matroid then
rank(G ) ≤ n, and consequently, mlt(G ) ≤ n. (Uhler 2012)
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Rigidity Matroid ∼= Symmetric Minor Matroid

Theorem (Gross-Sullivant)

A graph G has rank(G ) = n if and only if G is an independent set
in the (n − 1)-dimensional rigidity matroid A(n − 1) and not an
independent set in A(n − 2).

The (n − 1)-dimensional rigidity matroid A(n − 1) is isomorphic to
the rank n symmetric minor matroid.

Proof.

Compare the Jacobian of the map

(p1, . . . , pm) 7→ (||pi − pj ||22 : 1 ≤ i < j ≤ m)

to the Jacobian of the map

(p1, . . . , pm) 7→ (pi · pj : 1 ≤ i < j ≤ m)

This means that we can bound the mlt of a graph by checking

whether G is an independent set in A(n − 1).
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Laman’s Theorem

Corollary (Laman’s Theorem)

Let G = (V ,E ) be a graph, if for all subgraphs G ′ = (V ′,E ′) of G

#E ′ ≤ 2(#V ′)− 3,

then mlt(G ) ≤ 3.

Combinatorial Rigidity Theory

Consider the map  n : Rn⇥m ! Rm(m�1)/2

(p1, . . . , pm) 7! (kpi � pjk2
2 : 1  i < j  m)

Let Jn = I(im( n)) ✓ K[xij : 1  i < j  m].
The resulting matroid A(n) is the n-dimensional generic rigidity
matroid.
Spanning sets in the matroid are called (generically infinitesimally)
rigid graphs.
Bases in the matroid are called (generically) isostatic graphs.
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Elizabeth Gross, UH Mānoa Maximum likelihood threshold of a graph



r -cores

Definition

Let G be a graph and r ∈ N. The r-core of G is the graph
obtained by successively removing vertices of G of degree< r .

Theorem (Gross-Sullivant, Ben-David)

Let G have an empty n-core, then rank(G ) ≤ n.

⇒ mlt(Grk1,k2) = 3
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Elizabeth Gross, UH Mānoa Maximum likelihood threshold of a graph



r -cores

Definition

Let G be a graph and r ∈ N. The r-core of G is the graph
obtained by successively removing vertices of G of degree< r .

Theorem (Gross-Sullivant, Ben-David)

Let G have an empty n-core, then rank(G ) ≤ n.

⇒ mlt(Grk1,k2) = 3
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Planar graphsPlanar Graphs

Theorem
If G is a planar graph then mlt(G)  4.

Proof.
Cauchy’s theorem implies that every edge graph of a simplicial
3-polytope is rigid.
Edge count =) G isostatic =) rank(G)  4.
Every planar graph is a subgraph of graph of a simplicial
3-polytope.

Seth Sullivant (NCSU) Maximum Likelihood Threshold August 28, 2014 17 / 25

Theorem (Gross-Sullivant)

If G is a planar graph then mlt(G ) ≤ 4.

Proof.

Cauchy’s theorem implies that every edge graph of simplicial
3-polytope is rigid.

Edge count → G isostatic → rank(G ) ≤ 4

Every planar graph is a subgraph of a graph of a simplicial
3-polytope.
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Cycle-Free Coloring

Theorem (Gross-Sullivant 2018)

Let G be a graph and V1, . . . ,Vk a partition of the vertices of G
such that

1 for all i , Vi is an independent set of G and

2 for all i 6= j , G (Vi ,Vj) has no cycles.

Then rank(G ) ≤ k.

Cycle-Free Coloring

Corollary

Let G be a graph and V1, . . . ,Vk be a partition of the vertices of G such
that

1 for all i , Vi is an independent set of G and
2 for all i 6= j , G(Vi ,Vj) has no cycles.

Then rank(G)  k.

Seth Sullivant (NCSU) Maximum Likelihood Threshold August 28, 2014 19 / 25
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Score matching estimator

The score matching estimator is a computationally efficient and
consistent estimator for Gaussian graphical models (Hyvärinen
2005, Forbes–Lauritzen 2014) .

Definition

We call the smallest n such that the scoring matching exists with
probably one (i.e. for generic data) the scoring matching
threshold, or, smt.

Theorem (Gross-Sullivant)

Let G be a graph. Then

smt(G ) = rank(G ).
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Some questions

How are the boundary components of CG related to the
circuits in the rigidity matroid?

Maximum likelihood threshold has a natural rigidity theory
analogue: are they equivalent?

Determine the score matching threshold for Gaussian
graphical models with symmetries. Can the same methods be
used here?

How different can the maximum likelihood threshold be from
the weak maximum likelihood threshold?
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Thank you
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