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Gaussian graphical models

X = (X1, X2, X3, Xa) ~ N (0, %)

The non-edges of G record
the conditional independence
structure of X:

Xi AL Xa | (X2, X3)

X1 AL X3 | (X2, Xa)
= (2_1)14 =0, ():_1)13 =0.

S™=m x m symmetric real matrices
STy= pos. def. matrices in S™
SZy= psd matrices in S

Let G = (V,E) with |[V| = m.

Me={xeS? : (£ 1);=0forall
ihjst i#jij¢E}

Definition

The centered Gaussian graphical
model associated to the graph G is
the set of all multivariate normal
distributions A/(0, X) such that

> e Mg.
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Maximum likelihood estimation

Goal: Find ¥ that best explains data

Observations: Yi,...,Y,
Sample covariance matrix: S = 1x7 v,y

If the MLE exists, it is the unique positive definite matrix X that
satisfies:
Yj=S§jforijc Eandi=

(Z)UTl:Ofory'%Eandi;éj

When n > m, the MLE exists with probability one. What about
the case when m >> n?

Question (Lauritzen)

For a given graph G what is the smallest n such that the MLE
exists with probability one?
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Maximum likelihood threshold

Definition

We call the smallest n such that the MLE exists with probably one (i.e.
for generic data) the maximum likelihood threshold, or, mit.

Proposition (Buhl 1993)

cliqgue number of G < mit(G) < tree width of G + 1

o Clique number: w(G) = size of a largest
clique of G

o Chordal graph: A graph with no induced cycle 6 3 4
of length > 4. w(G)=3,7(G)=3
o Chordal cover of G = (V,E): A graph H =| Chordal cover of G:
(V, E’) such that H is chordal and E C E’. . . -
o Tree width: 7(G) =

min{w(H) — 1 : His a chordal cover of G}.

6 4
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Maximum likelihood threshold

Definition

We call the smallest n such that the MLE exists with probably one (i.e.
for generic data) the maximum likelihood threshold, or, mit.

Proposition (Buhl 1993)

cliqgue number of G < mit(G) < tree width of G + 1

Notice that these bounds can be far away from each other. Consider for
example, G = Gry, ,, the ki X ky grid graph:

w(G) = size of largest clique =2
7(G) = tree width = min(ki, k2)
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Geometry of Gaussian graphical models

o|V[=m oS™:=mx msymmetric real matrices
o ST, := pos. def. matrices in S o ST, := psd matrices in S™

. G: 1 2 3
@ Let 7w be the projection map that T D
extracts the entries of ¥ corresponding
to the vertices and edges of G: 123
l0¥e 2 1 2
76 :S™ — RVTE 321
d6(X) = (vii)iev @ (o)) ijeE _ (1’1,1,272)T

@ Cone of sufficient statistics: Cg := ¢¢(SZ;).
@ For a given S € ST, the MLE exists if and only if ¢¢(S) € int(Cg).

@ C¢ is the convex dual to the cone of concentration matrices K¢
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Geometry of maximum likelihood estimation

Concentration matrices: K Covariance matrices: 2
m m
=0 =0

Uhler, Geometry of maximum likelihood estimation in Gaussian graphical models (2012)

Light orange: K¢, cone of concentration matrices, Purple: ICEI, cone of
covariance matrices, Gray: Set of positive definite completions of S,

Dark orange: C¢, Cone of sufficient statistics
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Geometry of maximum likelihood estimation

Concentration matrices: X Covariance matrices: >

m
>0

Blue: S(m, n) N'Sx>o, Set of m x m positive semi-definite symmetric matrices

of rank < n
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Geometry of maximum likelihood estimation

Concentration matrices: X Covariance matrices: X

Blue: S(m, n) NS>, Set of m x m positive semi-definite symmetric matrices

of rank < n

Elizabeth Gross, UH Manoa Maximum likelihood threshold of a graph



Geometry of maximum likelihood estimation

Concentration matrices: K Covariance matrices: Y
m m
=0 >0

Blue: S(m, n) N'Sx>o, Set of m x m positive semi-definite symmetric matrices

of rank < n
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Geometry of maximum likelihood estimation

Concentration matrices: K Covariance matrices: Y

Blue: S(m, n) NS>, Set of m x m positive semi-definite symmetric matrices
of rank < n
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Geometry of maximum likelihood estimation

Concentration matrices: K Covariance matrices:

Blue: S(m, n) NS>0, Set of m x m positive semi-definite symmetric matrices

of rank < n
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Rank of a graph

Definition
Let S(m,n) :={X €S™ : rank(X) < n}.

The rank of a graph G is the minimal n such that
dim ¢(S(m, n)) =dimC¢g = |V| + | E]

Proposition (Uhler 2012)

mlt(G) < rank(G)

Goal: Connect the rank of a graph to combinatorial rigidity theory.

Method: Use algebraic matroids, in particular compare the rigidity
matroid and the symmetric minor matroid.
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Combinatorial Rigidity Theory

The study of rigidity deals with with bar and joint frameworks.
A framework is a graph G embedded in R".

A graph G is called rigid if, for
generic points p1,...,pm € R”, the
only continuous deformations that

preserve the distances ||p; — pj||> for
Rigid in R2 ij € E are rotations and translations.

v,

e

Not rigid in R?
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The rigidity matroid

A matroid M is a pair (E, ) where E is a finite set of elements, called
the ground set and / is a collection of subsets of E, called the
independent sets.

Consider the map v, : R™*m — Rm(m=1)/2

(P1,--»Pm) = ([Ipi —pjll5 + 1<i<j<m)
This is polynomial map with an associated matroid:
@ E = columns of the Jacobian at a generic point
@ | = all collections of independent columns

This matroid is called the n - dimensional generic rigidity matroid,
denoted A(n).

@ Spanning sets in the matroid are called (generically infinitesimally)
rigid graphs.

@ Bases in the matroid are called (generically) isostatic graphs.
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Laman’s Theorem

e To be a spanning set in A(n) must have nm — (";1) <|E|.

o Conversely, to be independent must have nm — (";1) > |E].

Theorem (Laman 1970)
A graph G = (V,E) is a basis (isostatic) in the rigidity matroid
A(2) if and only if
e |E| =2m — 3, and
o For every induced subgraph
Gw = (W, Ew), |Ew| <2|W|-3.
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Back to the rank of a graph

Concentration matrices: K Covariance matrices:

Blue: S(m, n) NS>0, Set of m x m positive semi-definite symmetric matrices

of rank < n
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Symmetric minor matroid

Definition

Let | C K[xi,...,x ] be a prime ideal. This defines an algebraic
matroid with ground set {x1,...,x}, and K C {x1,...,x} an
independent set if and only if / NK[K] = (0).

S(m, n) is an algebraic set whose defining ideal I, is generated by the
(n+1) x (n4 1)-minors of a m X m symmetric matrix ¥ = (o).

The set S(m, n) has an associated algebraic matroid:
@ ground set = {oj; : i <j},
@ independent sets= graphs G such that 7g(S(m, n)) = RV+E

This matroid is called the rank n symmetric minor matroid

If G is an independent set in the rank n symmetric minor matroid then
rank(G) < n, and consequently, mlt(G) < n. (Uhler 2012)
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Rigidity Matroid = Symmetric Minor Matroid

Theorem (Gross-Sullivant)

@ A graph G has rank(G) = n if and only if G is an independent set
in the (n — 1)-dimensional rigidity matroid A(n — 1) and not an
independent set in A(n — 2).

@ The (n — 1)-dimensional rigidity matroid A(n — 1) is isomorphic to
the rank n symmetric minor matroid.

Proof

Compare the Jacobian of the map

| A\

(Pr--opm) = (P —pjllz : 1<i<j<m)
to the Jacobian of the map
(p1,. -, Pm) = (pi-pj : 1<i<j<m)

\

This means that we can bound the mlt of a graph by checking
whether G is an independent set in A(n —1).
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Laman’s Theorem

Corollary (Laman's Theorem)

Let G = (V,E) be a graph, if for all subgraphs G' = (V' E’) of G
HE < 2A#V') -3,

then mit(G) < 3.
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r-cores

Definition

Let G be a graph and r € N. The r-core of G is the graph
obtained by successively removing vertices of G of degree< r.

Theorem (Gross-Sullivant, Ben-David)

Let G have an empty n-core, then rank(G) < n.

= mIt(Grkl,kz) =3
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r-cores

Definition

Let G be a graph and r € N. The r-core of G is the graph
obtained by successively removing vertices of G of degree< r.

Theorem (Gross-Sullivant, Ben-David)

Let G have an empty n-core, then rank(G) < n.

= mIt(Grkl,kz) =3
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r-cores

Definition

Let G be a graph and r € N. The r-core of G is the graph
obtained by successively removing vertices of G of degree< r.

Theorem (Gross-Sullivant, Ben-David)

Let G have an empty n-core, then rank(G) < n.

= m|t(Grk1’k2) =3
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r-cores

Definition

Let G be a graph and r € N. The r-core of G is the graph
obtained by successively removing vertices of G of degree< r.

Theorem (Gross-Sullivant, Ben-David)

Let G have an empty n-core, then rank(G) < n.

= mIt(Grkl’kZ) =3
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r-cores

Definition

Let G be a graph and r € N. The r-core of G is the graph
obtained by successively removing vertices of G of degree< r.

Theorem (Gross-Sullivant, Ben-David)

Let G have an empty n-core, then rank(G) < n.

= mlt(Grkh;Q) =3
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r-cores

Definition

Let G be a graph and r € N. The r-core of G is the graph
obtained by successively removing vertices of G of degree< r.

Theorem (Gross-Sullivant, Ben-David)

Let G have an empty n-core, then rank(G) < n.

= mlt(Grkh;Q) =3
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Planar graphs

Theorem (Gross-Sullivant)

If G is a planar graph then mlt(G) < 4.

Proof.

o Cauchy'’s theorem implies that every edge graph of simplicial
3-polytope is rigid.

e Edge count — G isostatic — rank(G) < 4

@ Every planar graph is a subgraph of a graph of a simplicial
3-polytope.
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Cycle-Free Coloring
Theorem (Gross-Sullivant 2018)

Let G be a graph and V4, ..., Vi a partition of the vertices of G
such that

Q for all i, V; is an independent set of G and
Q forall i # j, G(V;, V}) has no cycles.
Then rank(G) < k.

HH
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Score matching estimator

The score matching estimator is a computationally efficient and
consistent estimator for Gaussian graphical models (Hyvarinen
2005, Forbes—Lauritzen 2014) .

We call the smallest n such that the scoring matching exists with

probably one (i.e. for generic data) the scoring matching
threshold, or, smt.

Theorem (Gross-Sullivant)

Let G be a graph. Then

smt(G) = rank(G).
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Some questions

@ How are the boundary components of C¢ related to the
circuits in the rigidity matroid?

@ Maximum likelihood threshold has a natural rigidity theory
analogue: are they equivalent?

@ Determine the score matching threshold for Gaussian
graphical models with symmetries. Can the same methods be
used here?

@ How different can the maximum likelihood threshold be from
the weak maximum likelihood threshold?
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Thank you
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