Maximum likelihood threshold of a graph

Elizabeth Gross
University of Hawai'i at Mānoa

Joint work with Seth Sullivant, North Carolina State University

October 29, 2020

Gaussian graphical models

$X=\left(X_{1}, X_{2}, X_{3}, X_{4}\right) \sim \mathcal{N}(0, \Sigma)$

The non-edges of G record the conditional independence structure of X :

$$
\begin{gathered}
X_{1} \Perp X_{4} \mid\left(X_{2}, X_{3}\right) \\
X_{1} \Perp X_{3} \mid\left(X_{2}, X_{4}\right) \\
\Rightarrow\left(\Sigma^{-1}\right)_{14}=0,\left(\Sigma^{-1}\right)_{13}=0 .
\end{gathered}
$$

$\mathbb{S}^{m}=m \times m$ symmetric real matrices $\mathbb{S}_{>0}^{m}=$ pos. def. matrices in \mathbb{S}^{m}
$\mathbb{S}_{\geq 0}^{m}=$ psd matrices in \mathbb{S}^{m}

$$
\text { Let } G=(V, E) \text { with }|V|=m
$$

$$
\begin{aligned}
\mathcal{M}_{G}= & \left\{\Sigma \in \mathbb{S}_{>0}^{m}:\left(\Sigma^{-1}\right)_{i j}=0\right. \text { for all } \\
& i, j \text { s.t. } i \neq j, i j \notin E\}
\end{aligned}
$$

Definition

The centered Gaussian graphical model associated to the graph G is the set of all multivariate normal distributions $\mathcal{N}(0, \Sigma)$ such that $\Sigma \in \mathcal{M}_{\mathcal{G}}$.

Maximum likelihood estimation

Goal: Find Σ that best explains data
Observations: Y_{1}, \ldots, Y_{n}
Sample covariance matrix: $S=\frac{1}{n} \sum_{i=1}^{n} Y_{i} Y_{i}^{\top}$
If the MLE exists, it is the unique positive definite matrix Σ that satisfies:

$$
\begin{gathered}
\Sigma_{i j}=S_{i j} \text { for } i j \in E \text { and } i=j \\
(\Sigma)_{i j}^{-1}=0 \text { for } i j \notin E \text { and } i \neq j
\end{gathered}
$$

When $n \geq m$, the MLE exists with probability one. What about the case when $m \gg n$?

Question (Lauritzen)

For a given graph G what is the smallest n such that the MLE exists with probability one?

Maximum likelihood threshold

Definition

We call the smallest n such that the MLE exists with probably one (i.e. for generic data) the maximum likelihood threshold, or, mlt.

Proposition (Buhl 1993)

$$
\text { clique number of } G \leq m / t(G) \leq \text { tree width of } G+1
$$

- Clique number: $\omega(G)=$ size of a largest clique of G
- Chordal graph: A graph with no induced cycle of length ≥ 4.
- Chordal cover of $G=(V, E)$: A graph $H=$ (V, E^{\prime}) such that H is chordal and $E \subseteq E^{\prime}$.
- Tree width: $\tau(G)=$ $\min \{\omega(H)-1: H$ is a chordal cover of $G\}$.

$$
\omega(G)=3, \tau(G)=3
$$

Chordal cover of G :

Maximum likelihood threshold

Definition

We call the smallest n such that the MLE exists with probably one (i.e. for generic data) the maximum likelihood threshold, or, mlt.

Proposition (Buhl 1993)

$$
\text { clique number of } G \leq m / t(G) \leq \text { tree width of } G+1
$$

Notice that these bounds can be far away from each other. Consider for example, $G=G r_{k_{1}, k_{2}}$, the $k_{1} \times k_{2}$ grid graph:

$\omega(G)=$ size of largest clique $=2$
$\tau(G)=$ tree width $=\min \left(k_{1}, k_{2}\right)$

Geometry of Gaussian graphical models

$\circ|V|=m \quad \circ \mathbb{S}^{m}:=m \times m$ symmetric real matrices

- $\mathbb{S}_{>0}^{m}:=$ pos. def. matrices in $\mathbb{S}^{m} \quad \circ \mathbb{S}_{\geq 0}^{m}:=$ psd matrices in \mathbb{S}^{m}
- Let π_{G} be the projection map that extracts the entries of Σ corresponding to the vertices and edges of G :

$$
\begin{aligned}
\pi_{G}: \mathbb{S}^{m} & \rightarrow \mathbb{R}^{V+E} \\
\phi_{G}(\Sigma) & =\left(\sigma_{i i}\right)_{i \in V} \oplus\left(\sigma_{i j}\right)_{i j \in E}
\end{aligned}
$$

$$
\begin{gathered}
\phi_{G}\left(\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 2 \\
3 & 2 & 1
\end{array}\right]\right) \\
=(1,1,1,2,2)^{T}
\end{gathered}
$$

- Cone of sufficient statistics: $\mathcal{C}_{G}:=\phi_{G}\left(\mathbb{S}_{>0}^{m}\right)$.
- For a given $S \in \mathbb{S}_{\geq 0}^{m}$, the MLE exists if and only if $\phi_{G}(S) \in \operatorname{int}\left(\mathcal{C}_{G}\right)$.
- \mathcal{C}_{G} is the convex dual to the cone of concentration matrices \mathcal{K}_{G}

Geometry of maximum likelihood estimation

Concentration matrices: K

Covariance matrices: Σ

Uhler, Geometry of maximum likelihood estimation in Gaussian graphical models (2012)
Light orange: \mathcal{K}_{G}, cone of concentration matrices, Purple: \mathcal{K}_{G}^{-1}, cone of covariance matrices, Gray: Set of positive definite completions of S, Dark orange: \mathcal{C}_{G}, Cone of sufficient statistics

Geometry of maximum likelihood estimation

Concentration matrices: K
Covariance matrices: Σ

Blue: $S(m, n) \cap \mathbb{S}_{\geq 0}$, Set of $m \times m$ positive semi-definite symmetric matrices of rank $\leq n$

Geometry of maximum likelihood estimation

Covariance matrices: Σ

Blue: $S(m, n) \cap \mathbb{S}_{\geq 0}$, Set of $m \times m$ positive semi-definite symmetric matrices of rank $\leq n$

Geometry of maximum likelihood estimation

Concentration matrices: K
Covariance matrices: Σ

Blue: $S(m, n) \cap \mathbb{S}_{\geq 0}$, Set of $m \times m$ positive semi-definite symmetric matrices of rank $\leq n$

Geometry of maximum likelihood estimation

Concentration matrices: K

Covariance matrices: Σ

Blue: $S(m, n) \cap \mathbb{S}_{\geq 0}$, Set of $m \times m$ positive semi-definite symmetric matrices of rank $\leq n$

Geometry of maximum likelihood estimation

Concentration matrices: K

Covariance matrices: Σ

Blue: $S(m, n) \cap \mathbb{S}_{\geq 0}$, Set of $m \times m$ positive semi-definite symmetric matrices of rank $\leq n$

Rank of a graph

Definition

Let $S(m, n):=\left\{\Sigma \in \mathbb{S}^{m}: \operatorname{rank}(\Sigma) \leq n\right\}$.
The rank of a graph G is the minimal n such that $\operatorname{dim} \phi_{G}(S(m, n))=\operatorname{dim} \mathcal{C}_{G}=|V|+|E|$

Proposition (Uhler 2012)

$$
m / t(G) \leq \operatorname{rank}(G)
$$

Goal: Connect the rank of a graph to combinatorial rigidity theory.

Method: Use algebraic matroids, in particular compare the rigidity matroid and the symmetric minor matroid.

Combinatorial Rigidity Theory

The study of rigidity deals with with bar and joint frameworks. A framework is a graph G embedded in \mathbb{R}^{n}.

Rigid in \mathbb{R}^{2}

A graph G is called rigid if, for generic points $\mathbf{p}_{1}, \ldots, \mathbf{p}_{m} \in \mathbb{R}^{n}$, the only continuous deformations that preserve the distances $\left\|\mathbf{p}_{i}-\mathbf{p}_{j}\right\|_{2}$ for $i j \in E$ are rotations and translations.

Not rigid in \mathbb{R}^{2}

The rigidity matroid

A matroid M is a pair (E, I) where E is a finite set of elements, called the ground set and I is a collection of subsets of E, called the independent sets.

Consider the map $\psi_{n}: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}^{m(m-1) / 2}$

$$
\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{m}\right) \mapsto\left(\left\|\mathbf{p}_{i}-\mathbf{p}_{j}\right\|_{2}^{2}: 1 \leq i<j \leq m\right) .
$$

This is polynomial map with an associated matroid:

- $E=$ columns of the Jacobian at a generic point
- $I=$ all collections of independent columns

This matroid is called the \mathbf{n}-dimensional generic rigidity matroid, denoted $\mathcal{A}(n)$.

- Spanning sets in the matroid are called (generically infinitesimally) rigid graphs.
- Bases in the matroid are called (generically) isostatic graphs.

Laman's Theorem

- To be a spanning set in $\mathcal{A}(n)$ must have $n m-\binom{n+1}{2} \leq|E|$.
- Conversely, to be independent must have $n m-\binom{n+1}{2} \geq|E|$.

Theorem (Laman 1970)

A graph $G=(V, E)$ is a basis (isostatic) in the rigidity matroid $\mathcal{A}(2)$ if and only if

- $|E|=2 m-3$, and
- For every induced subgraph

$$
G_{W}=\left(W, E_{W}\right),\left|E_{W}\right| \leq 2|W|-3
$$

Back to the rank of a graph

Concentration matrices: K
$\mathbb{S}_{\succ 0}^{m}$

Covariance matrices: Σ

Blue: $S(m, n) \cap \mathbb{S}_{\geq 0}$, Set of $m \times m$ positive semi-definite symmetric matrices of rank $\leq n$

Symmetric minor matroid

Definition

Let $I \subset \mathbb{K}\left[x_{1}, \ldots, x_{r}\right]$ be a prime ideal. This defines an algebraic matroid with ground set $\left\{x_{1}, \ldots, x_{r}\right\}$, and $K \subseteq\left\{x_{1}, \ldots, x_{r}\right\}$ an independent set if and only if $I \cap \mathbb{K}[K]=\langle 0\rangle$.
$S(m, n)$ is an algebraic set whose defining ideal I_{n} is generated by the $(n+1) \times(n+1)$-minors of a $m \times m$ symmetric matrix $\Sigma=\left(\sigma_{i j}\right)$.

The set $S(m, n)$ has an associated algebraic matroid:

- ground set $=\left\{\sigma_{i j}: i<j\right\}$,
- independent sets $=$ graphs G such that $\pi_{G}(S(m, n))=\mathbb{R}^{V+E}$

This matroid is called the rank n symmetric minor matroid

Remark

If G is an independent set in the rank n symmetric minor matroid then $\operatorname{rank}(G) \leq n$, and consequently, $m / t(G) \leq n$. (Uhler 2012)

Rigidity Matroid \cong Symmetric Minor Matroid

Theorem (Gross-Sullivant)

- A graph G has $\operatorname{rank}(G)=n$ if and only if G is an independent set in the $(n-1)$-dimensional rigidity matroid $\mathcal{A}(n-1)$ and not an independent set in $\mathcal{A}(n-2)$.
- The $(n-1)$-dimensional rigidity matroid $\mathcal{A}(n-1)$ is isomorphic to the rank n symmetric minor matroid.

Proof.

Compare the Jacobian of the map

$$
\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{m}\right) \mapsto\left(\left\|\mathbf{p}_{i}-\mathbf{p}_{j}\right\|_{2}^{2}: 1 \leq i<j \leq m\right)
$$

to the Jacobian of the map

$$
\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{m}\right) \mapsto\left(\mathbf{p}_{i} \cdot \mathbf{p}_{j}: 1 \leq i<j \leq m\right)
$$

This means that we can bound the mlt of a graph by checking whether G is an independent set in $\mathcal{A}(n-1)$.

Laman's Theorem

Corollary (Laman's Theorem)

Let $G=(V, E)$ be a graph, if for all subgraphs $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of G

$$
\# E^{\prime} \leq 2\left(\# V^{\prime}\right)-3
$$

then $m / t(G) \leq 3$.

Definition

Let G be a graph and $r \in \mathbb{N}$. The r-core of G is the graph obtained by successively removing vertices of G of degree $<r$.

Theorem (Gross-Sullivant, Ben-David)

Let G have an empty n-core, then $\operatorname{rank}(G) \leq n$.
$\Rightarrow \boldsymbol{m l t}\left(G r_{k_{1}, k_{2}}\right)=3$

Elizabeth Gross, UH Mānoa

Definition

Let G be a graph and $r \in \mathbb{N}$. The r-core of G is the graph obtained by successively removing vertices of G of degree $<r$.

Theorem (Gross-Sullivant, Ben-David)

Let G have an empty n-core, then $\operatorname{rank}(G) \leq n$.
$\Rightarrow \boldsymbol{m l t}\left(G r_{k_{1}, k_{2}}\right)=3$

r-cores

Definition

Let G be a graph and $r \in \mathbb{N}$. The r-core of G is the graph obtained by successively removing vertices of G of degree $<r$.

Theorem (Gross-Sullivant, Ben-David)

Let G have an empty n-core, then $\operatorname{rank}(G) \leq n$.
$\Rightarrow \boldsymbol{m l t}\left(G r_{k_{1}, k_{2}}\right)=3$

Definition

Let G be a graph and $r \in \mathbb{N}$. The r-core of G is the graph obtained by successively removing vertices of G of degree $<r$.

Theorem (Gross-Sullivant, Ben-David)

Let G have an empty n-core, then $\operatorname{rank}(G) \leq n$.
$\Rightarrow \boldsymbol{m l t}\left(G r_{k_{1}, k_{2}}\right)=3$

r-cores

Definition

Let G be a graph and $r \in \mathbb{N}$. The r-core of G is the graph obtained by successively removing vertices of G of degree $<r$.

Theorem (Gross-Sullivant, Ben-David)

Let G have an empty n-core, then $\operatorname{rank}(G) \leq n$.
$\Rightarrow \boldsymbol{m l t}\left(G r_{k_{1}, k_{2}}\right)=3$

Definition

Let G be a graph and $r \in \mathbb{N}$. The r-core of G is the graph obtained by successively removing vertices of G of degree $<r$.

Theorem (Gross-Sullivant, Ben-David)

Let G have an empty n-core, then $\operatorname{rank}(G) \leq n$.
$\Rightarrow \boldsymbol{m l t}\left(G r_{k_{1}, k_{2}}\right)=3$

Definition

Let G be a graph and $r \in \mathbb{N}$. The r-core of G is the graph obtained by successively removing vertices of G of degree $<r$.

Theorem (Gross-Sullivant, Ben-David)

Let G have an empty n-core, then $\operatorname{rank}(G) \leq n$.
$\Rightarrow \boldsymbol{m l t}\left(G r_{k_{1}, k_{2}}\right)=3$

Planar graphs

Theorem (Gross-Sullivant)

If G is a planar graph then $m / t(G) \leq 4$.

Proof.

- Cauchy's theorem implies that every edge graph of simplicial 3-polytope is rigid.
- Edge count $\rightarrow \mathrm{G}$ isostatic $\rightarrow \operatorname{rank}(G) \leq 4$
- Every planar graph is a subgraph of a graph of a simplicial 3-polytope.

Cycle-Free Coloring

Theorem (Gross-Sullivant 2018)

Let G be a graph and V_{1}, \ldots, V_{k} a partition of the vertices of G such that
(1) for all i, V_{i} is an independent set of G and
(2) for all $i \neq j, G\left(V_{i}, V_{j}\right)$ has no cycles.

Then $\operatorname{rank}(G) \leq k$.

Score matching estimator

The score matching estimator is a computationally efficient and consistent estimator for Gaussian graphical models (Hyvärinen 2005, Forbes-Lauritzen 2014) .

Definition

We call the smallest n such that the scoring matching exists with probably one (i.e. for generic data) the scoring matching threshold, or, smt.

Theorem (Gross-Sullivant)

Let G be a graph. Then

$$
\operatorname{smt}(G)=\operatorname{rank}(G)
$$

Some questions

- How are the boundary components of \mathcal{C}_{G} related to the circuits in the rigidity matroid?
- Maximum likelihood threshold has a natural rigidity theory analogue: are they equivalent?
- Determine the score matching threshold for Gaussian graphical models with symmetries. Can the same methods be used here?
- How different can the maximum likelihood threshold be from the weak maximum likelihood threshold?

Thank you

目 G．Blekherman and R．Sinn．Maximum likelihood threshold and generic completion rank of graphs．Discrete \＆Computational Geometry 61，no． 2 （2019）：303－324．

R．D．Bernstein，G．Blekherman，and R．Sinn．Typical and generic ranks in matrix completion．Linear Algebra and its Applications 585 （2020）：71－104．

冨 S．Buhl．On the existence of maximum likelihood estimators for graphical Gaussian models．Scand．J．Statist． 20 （1993），no．3， 263－270．

E．Gross and S．Sullivant．The maximum likelihood threshold of a graph．Bernoulli， 24 no． 1 （2018）386－407．

图 S．Lauritzen．Graphical models．Oxford Statistical Science Series 17， Oxford University Press，New York， 1996.
（ C．Uhler．Geometry of maximum likelihood estimation in Gaussian graphical models．Ann．Statist． 40 （2012），no．1，238－261．

