Characterizing the Universal Rigidity of Generic Tensegrities

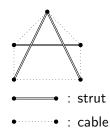
Ryoshun Oba (University of Tokyo)

joint work with Shin-ichi Tanigawa

2020 July 23

Brief Overview

- A tensegrity is a structure made from bars, cables and struts. A tensegrity is universally rigid if it is globally rigid in any dimension.
- Connelly(1982) showed that there is a compact certificate for universal rigidity.
- We showed that universally rigid <u>generic</u> tensegrities always have this certificate. We also extended this result to symmetric tensegrities.
- The proof relies on convex analysis and <u>real</u> representation theory.



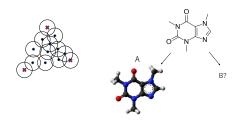
$\begin{pmatrix} 3\\ -4\\ 2\\ 0\\ -1 \end{pmatrix}$	-4	2	0	-1
-4	6	-4	2	0
2	-4	4	-4	2
0	2 0	-4	6	-4
$\setminus -1$	0	2	-4	$\begin{pmatrix} -1\\ 0\\ 2\\ -4\\ 3 \end{pmatrix}$

Certificate for UR

Why universal rigidity?

Motivation for global rigidity:

- Sensor network localization
- Structure analysis of molecules
- Intersegrity construction



- $\bullet~\mbox{Global}$ rigidity $\rightarrow~\mbox{rank-constrained}$ SDP
- Universal rigidity \rightarrow SDP

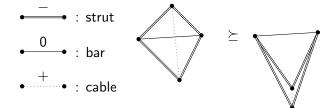
Definition

- A *d*-dimensional tensegirty is a triple (G, σ, p) of
 - ▶ a finite graph *G*,
 - a sign map $\sigma: E(G) \rightarrow \{-, 0, +\}$,
 - a point configuration $p: V(G) \to \mathbb{R}^d$.

When $\sigma(e) = 0$ $(e \in E(G))$, it is called a framework.

• We denote $(G, \sigma, p) \succeq (G, \sigma, q)$ if

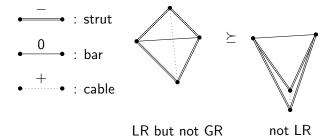
$$egin{array}{rcl} &\leq & (\sigma(ij)=-) \ &= & \|q_i-q_j\| & (\sigma(ij)=0) \ &\geq & (\sigma(ij)=+) \end{array}$$



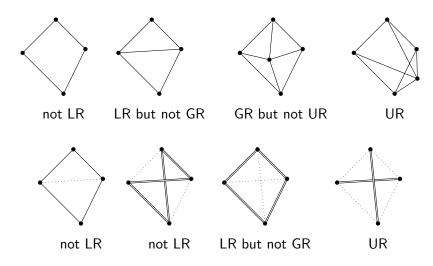
Definition

$$\begin{array}{cccc} (G, \sigma, p) \succeq (G, \sigma, q) \iff & \|p_i - p_j\| & \stackrel{\leq}{=} & \|q_i - q_j\| & (\sigma(ij) = -) \\ & \geq & (\sigma(ij) = 0) \\ & \geq & (\sigma(ij) = +) \end{array}$$

- (G, σ, p) is globally rigid if (G, σ, p) ≥ (G, σ, q) implies that q is congruent to p.
- A tensegrity is *locally rigid* if it is globally rigid in its neighborhood.
- A tensegrity is <u>universally rigid</u> if it is globally rigid in any dimension. (Equivalently, locally rigid in any dimension.)



Examples

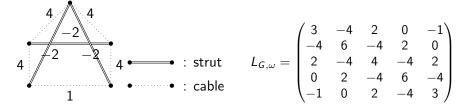


- Universal rigidity is not a generic property.
- Rigidity of tensegirty is not a generic property.

Equilibrium Stress

- $\omega: E(G) \to \mathbb{R}$ is a strictly proper equilibrium stress of a tensegirty (G, σ, p) if $\omega(e) > 0(\sigma(e) = +)$, $\omega(e) < 0(\sigma(e) = -)$ and $\sum_{j \in N_G(i)} \omega(ij)(p_j - p_i) = 0 \quad (i \in V(G)).$
- For an edge weight $\omega : E(G) \to \mathbb{R}$, its weighted Laplacian $L_{G,\omega}$ is a $|V(G)| \times |V(G)|$ matrix defined by

$$L_{G,\omega} := \sum_{ij \in E(G)} \omega(ij) (\boldsymbol{e}_i - \boldsymbol{e}_j) (\boldsymbol{e}_i - \boldsymbol{e}_j)^{ op}.$$



Super Stability

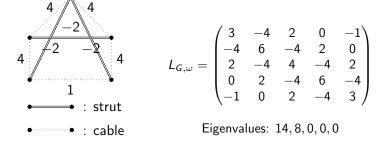
Conic condition

• Any affine image q of p satisfying $(G, \sigma, p) \succeq (G, \sigma, q)$ is congruent to p.

Theorem [Connelly 1982]

A *d*-dimensional tensegirty (G, σ, p) satisfying conic condition is universally rigid if there exists a strictly proper equilibrium stress $\omega : E(G) \to \mathbb{R}$ such that rank $L_{G,\omega} = |V(G)| - d - 1$ and $L_{G,\omega} \succeq 0$.

is called super stability.



Theorem A

Super stability is sufficient for universal rigidty.

• A tensegity is generic if the coordinates of the point configuration are algebraically independent over \mathbb{Q} .

Theorem [Gortler-Thurston 2014]

For generic frameworks, super stability is necessary and sufficient for universal rigidity.

Theorem A

For generic tensegrities, super stability is necessary and sufficient for universal rigidity.

Symmetric Frameworks

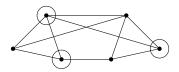
Definition

Let Γ be a finite group and $\theta : \Gamma \to O(\mathbb{R}^d)$ be a group homomorphism. A *d*-dimensional framework (G, p) is θ -symmetric if

• Γ freely acts on Aut(G) and

•
$$\theta(\gamma)p_i = p_{\gamma i} \ (\gamma \in \Gamma, i \in V(G))$$

A θ -symmetric framework is generic modulo symmetry if the coordinates of representative vertices are generic over $\mathbb{Q}_{\theta,\Gamma}$, which is a finite extension field of \mathbb{Q} generated by entries of $\theta(\gamma)$ and representatives of real irreducible representations of Γ .



Theorem B

Definition

Let Γ be a finite group and $\theta : \Gamma \to O(\mathbb{R}^d)$ be a group homomorphism. A *d*-dimensional framework (G, p) is θ -symmetric if

• Γ freely acts on Aut(G) and

•
$$\theta(\gamma)p_i = p_{\gamma i} \ (\gamma \in \Gamma, i \in V(G))$$

Theorem B

For any θ -symmetric framework which is generic modulo symmetry for some θ , super stability is necessary and sufficient for universal rigidity.

(The same statement holds for symmetric tensegrities.)

Position of Our Results

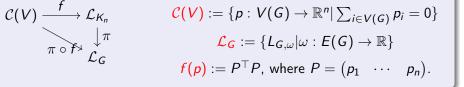
- [Connelly 2005] and [Gortler-Healy-Thurston 2010] showed that generic global rigidity is characterized by max-rank equilibrium stress matrix.
- [Connelly-Gortler-Theran 2020] showed that a graph is generically globally rigid if and only if it has a universally rigid generic realization.

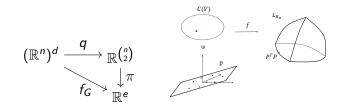
	frameworks	tensegrities	with symmetry
GR	Connelly(2005)		
	Gortler-Healy-Thurston(2010)		
UR	Connelly(1982)*	Connelly(1982)*	Connelly(1982)*
	Gortler-Thurston(2014)	Theorem A	Theorem B

Table: Algebraic characterization under genericity

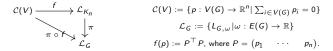
- *: Without genericity
 - [Connelly and Gortler 2015] showed that the universal rigidity of tensegrities, not necessarily generic, is characterized by stronger condition than super stability.

Generic Framework Case: Step 1 [Gortler-Thurston 2014] Let n = |V(G)|.



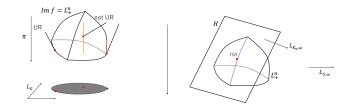


Generic Framework Case: Step 1 [Gortler-Thurston 2014]



Observation

- (G, p) is universally rigid $\iff \#(\pi^{-1}(\pi \circ f(p)) \cap \operatorname{Im} f) = 1.$
- Im $f = \mathcal{L}_{K_n} \cap \mathcal{S}^n_+ \simeq \mathcal{S}^{n-1}_+$.
- $L_{K_n,\omega} \in (\mathcal{L}_{K_n})^*$ exposes the smallest face containing $f(p) \iff \omega$ is an equilibrium stress on (K_n, p) and rank $L_{K_n,\omega} = n d 1$, $L_{K_n,\omega} \succeq 0$.



Generic Framework Case: Step 2 [Gortler-Thurston 2014]

Proposition [Gortler-Thurston 2014]

Let $K \subseteq \mathbb{R}^{l}$ be a closed, convex, line-free semialgebraic set and $\pi : \mathbb{R}^{l} \to \mathbb{R}^{l'}$ be a projection. A point $x \in K$ is locally generic within *m*-extreme points of *K* for some $m \in \mathbb{N}$ and $\#\pi^{-1}(\pi(x)) \cap K = 1$. Then, the smallest face containing *x* is exposed by a hyperplane parallel to π .

- By the genericity of p, f(p) is generic in $\binom{d+1}{2}$ -extreme points of Im f.
- The above proposition guarantees that we can take ω as an equilibrium stress on (G, p).

Proof of Theorem A

Theorem A

For generic tensegrities, super stability is necessary for universal rigidity.

$$\mathcal{C}(V) \xrightarrow{f} \mathcal{L}_{K_n} \xrightarrow{\iota} \mathcal{L}_{K_n} \times \mathbb{R}^{e_{\pm}}$$

$$\downarrow^{\pi}_{\mathcal{L}_{G}} \xrightarrow{\pi'}$$

- $\pi'(L,s) := (L_{ij} + \sigma(ij)s_{ij})_{ij \in E}.$
- (G, σ, p) is universally rigid $\Leftrightarrow \# \pi'^{-1}(\pi'(f(p), \mathbf{0})) \cap (\operatorname{Im} f \times \mathbb{R}^{e_{\pm}}_{\geq 0}) = 1.$
- We can prove local genericity of (f(p), 0) in (^{d+1}₂)-extreme points of Im f × ℝ^{e±}_{≥0}.
- By Gortler-Thurston's propostion, super stability is guaranteed.

Proof of Theorem B: Step 1

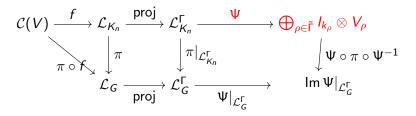
Theorem B

For any θ -symmetric framework which is generic modulo symmetry for some θ , super stability is necessary and sufficient for universal rigidity.

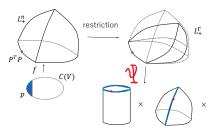
Symmetric Laplacaians

Let
$$\mathcal{L}_{G}^{\Gamma} := \{L_{G,\omega} | \omega : E(G) \to \mathbb{R}, \omega(\gamma i) = \omega(i) (i \in V(G), \gamma \in \Gamma)\}.$$

Proof of Theorem B: Step 2



• Ψ is a decomposition of regular representation into real irreducible representations. $\tilde{\Gamma}$ is a equivalence set of real irreducible representations. V_{ρ} is a linear space defined by $\rho \in \tilde{\Gamma}$.



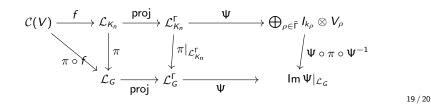
Proof of Theorem B: Step 3

Lemma

 $\Psi \circ f(p)$ is locally generic in *m*-extreme points in $\operatorname{Im} \Psi \circ f$ for some $m \in \mathbb{N}$.

Proof Sketch.

- 1 Let $C_{\theta} := \{ p \in C(V) : (G, p) \text{ is } \theta \text{-symmetric} \}$. <u>*p*</u> is generic in C_{θ} .
- 2 We can describe $\Psi \circ f(C_{\theta})$ by the orthogonality relation of real irreducible representations.
- 3 Im $\Psi \circ f$ is isomorphic to the direct product of \mathcal{S}_{+}^{k} , $\mathcal{S}_{\mathbb{C},+}^{k}$ and $\mathcal{S}_{\mathbb{H},+}^{k}$.
- 4 1, 2, 3 prove lemma.



Concluding Remarks

	frameworks	tensegrities	with symmetry
GR	Connelly(2005)		
	Gortler-Healy-Thurston(2010)		
UR	Connelly(1982)*	Connelly(1982)*	Connelly(1982)*
	Gortler-Thurston(2014)	Theorem A	Theorem B

Table: Algebraic characterization under genericity