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Rigidity

(Bar-joint) framework: (G,p), where G = (V ,E) is a graph and
p : V → Rd is a map.

(G,p) and (G,q) in Rd are equivalent if

‖p(j)− p(i)‖ = ‖q(j)− q(i)‖ for all {i , j} ∈ E .

They are congruent if

‖p(j)− p(i)‖ = ‖q(j)− q(i)‖ for all i , j ∈ V .

(G,p) is called (locally) rigid if there exists a neighborhood of p in which
every framework (G,q) that is equivalent to (G,p) is congruent to (G,p).

(G,p) is called globally rigid if every framework (G,q) in Rd equivalent to
(G,p) is congruent to (G,p).

Bernd Schulze Frameworks with coordinated constraints November 2020 5 / 29



Rigidity

(Bar-joint) framework: (G,p), where G = (V ,E) is a graph and
p : V → Rd is a map.

(G,p) and (G,q) in Rd are equivalent if

‖p(j)− p(i)‖ = ‖q(j)− q(i)‖ for all {i , j} ∈ E .

They are congruent if

‖p(j)− p(i)‖ = ‖q(j)− q(i)‖ for all i , j ∈ V .

(G,p) is called (locally) rigid if there exists a neighborhood of p in which
every framework (G,q) that is equivalent to (G,p) is congruent to (G,p).

(G,p) is called globally rigid if every framework (G,q) in Rd equivalent to
(G,p) is congruent to (G,p).

Bernd Schulze Frameworks with coordinated constraints November 2020 5 / 29



Rigidity

(Bar-joint) framework: (G,p), where G = (V ,E) is a graph and
p : V → Rd is a map.

(G,p) and (G,q) in Rd are equivalent if

‖p(j)− p(i)‖ = ‖q(j)− q(i)‖ for all {i , j} ∈ E .

They are congruent if

‖p(j)− p(i)‖ = ‖q(j)− q(i)‖ for all i , j ∈ V .

(G,p) is called (locally) rigid if there exists a neighborhood of p in which
every framework (G,q) that is equivalent to (G,p) is congruent to (G,p).

(G,p) is called globally rigid if every framework (G,q) in Rd equivalent to
(G,p) is congruent to (G,p).

Bernd Schulze Frameworks with coordinated constraints November 2020 5 / 29



Rigidity

(Bar-joint) framework: (G,p), where G = (V ,E) is a graph and
p : V → Rd is a map.

(G,p) and (G,q) in Rd are equivalent if

‖p(j)− p(i)‖ = ‖q(j)− q(i)‖ for all {i , j} ∈ E .

They are congruent if

‖p(j)− p(i)‖ = ‖q(j)− q(i)‖ for all i , j ∈ V .

(G,p) is called (locally) rigid if there exists a neighborhood of p in which
every framework (G,q) that is equivalent to (G,p) is congruent to (G,p).

(G,p) is called globally rigid if every framework (G,q) in Rd equivalent to
(G,p) is congruent to (G,p).

Bernd Schulze Frameworks with coordinated constraints November 2020 5 / 29



Rigidity (cont.)

A finite motion of (G,p) is a one-parameter family (G,pt ) with p0 = p and
(G,pt ) equivalent to (G,p) for all t ∈ [0,1).

A finite motion is non-trivial if not all the (G,pt ) are congruent to (G,p).

A framework is flexible if it has a non-trivial finite motion.

Theorem (Asimov-Roth, 78): Not rigid is equivalent to flexible.

Figure: A flexible and a rigid framework in R2.
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Infinitesimal rigidity

An infinitesimal motion p′ ∈ Rd|V | of a framework (G,p) in Rd is a velocity
field supported on p such that

[p(j)− p(i)] · [p′(j)− p′(i)] = 0 for all {i , j} ∈ E

The |E | × d |V | matrix of this system (with p′ unknown) is the rigidity
matrix R(p) of (G,p).

p′ is called trivial if it arises as the derivative of a rigid motion of Rd ,
restricted to p.

A framework (G,p) in Rd is infinitesimally rigid if every infinitesimal
motion of it is trivial. Otherwise (G,p) is infinitesimally flexible.

The dimension of the space of trivial infinitesimal motions of a framework
(G,p) in Rd with |V | ≥ d is

(d+1
2

)
. Thus, (G,p) is infinitesimally rigid if

and only if rankR(p) = d |V | −
(d+1

2

)
.
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Generic rigidity

p is generic if the coordinates are algebraically independent over Q.

Theorem (Asimov-Roth, 78) Fix a dimension d and let G be a graph
with |V | ≥ d . If a framework (G,p) in Rd is infinitesimally rigid, then it is
rigid. If (G,p) is generic and infinitesimally flexible, then it is flexible.

Cor.: If a generic framework (G,p) in Rd is rigid then all generic
realizations of G in Rd are rigid.

A graph G is rigid (in dimension d) if some (any) generic realization of G
in Rd is rigid.
If G is rigid in dimension d , but no proper spanning subgraph of G is rigid
in dimension d , then G is isostatic in dimension d .

There are well known combinatorial characterisations of isostatic or rigid
graphs in R2 (e.g. Pollaczek-Geiringer, 1927, and Laman, 1970).
Such a characterisation has not yet been found for higher dimensions.

Bernd Schulze Frameworks with coordinated constraints November 2020 8 / 29



Generic rigidity

p is generic if the coordinates are algebraically independent over Q.

Theorem (Asimov-Roth, 78) Fix a dimension d and let G be a graph
with |V | ≥ d . If a framework (G,p) in Rd is infinitesimally rigid, then it is
rigid. If (G,p) is generic and infinitesimally flexible, then it is flexible.

Cor.: If a generic framework (G,p) in Rd is rigid then all generic
realizations of G in Rd are rigid.

A graph G is rigid (in dimension d) if some (any) generic realization of G
in Rd is rigid.
If G is rigid in dimension d , but no proper spanning subgraph of G is rigid
in dimension d , then G is isostatic in dimension d .

There are well known combinatorial characterisations of isostatic or rigid
graphs in R2 (e.g. Pollaczek-Geiringer, 1927, and Laman, 1970).
Such a characterisation has not yet been found for higher dimensions.

Bernd Schulze Frameworks with coordinated constraints November 2020 8 / 29



Generic rigidity

p is generic if the coordinates are algebraically independent over Q.

Theorem (Asimov-Roth, 78) Fix a dimension d and let G be a graph
with |V | ≥ d . If a framework (G,p) in Rd is infinitesimally rigid, then it is
rigid. If (G,p) is generic and infinitesimally flexible, then it is flexible.

Cor.: If a generic framework (G,p) in Rd is rigid then all generic
realizations of G in Rd are rigid.

A graph G is rigid (in dimension d) if some (any) generic realization of G
in Rd is rigid.
If G is rigid in dimension d , but no proper spanning subgraph of G is rigid
in dimension d , then G is isostatic in dimension d .

There are well known combinatorial characterisations of isostatic or rigid
graphs in R2 (e.g. Pollaczek-Geiringer, 1927, and Laman, 1970).
Such a characterisation has not yet been found for higher dimensions.

Bernd Schulze Frameworks with coordinated constraints November 2020 8 / 29



Generic rigidity

p is generic if the coordinates are algebraically independent over Q.

Theorem (Asimov-Roth, 78) Fix a dimension d and let G be a graph
with |V | ≥ d . If a framework (G,p) in Rd is infinitesimally rigid, then it is
rigid. If (G,p) is generic and infinitesimally flexible, then it is flexible.

Cor.: If a generic framework (G,p) in Rd is rigid then all generic
realizations of G in Rd are rigid.

A graph G is rigid (in dimension d) if some (any) generic realization of G
in Rd is rigid.
If G is rigid in dimension d , but no proper spanning subgraph of G is rigid
in dimension d , then G is isostatic in dimension d .

There are well known combinatorial characterisations of isostatic or rigid
graphs in R2 (e.g. Pollaczek-Geiringer, 1927, and Laman, 1970).
Such a characterisation has not yet been found for higher dimensions.

Bernd Schulze Frameworks with coordinated constraints November 2020 8 / 29



Generic rigidity

p is generic if the coordinates are algebraically independent over Q.

Theorem (Asimov-Roth, 78) Fix a dimension d and let G be a graph
with |V | ≥ d . If a framework (G,p) in Rd is infinitesimally rigid, then it is
rigid. If (G,p) is generic and infinitesimally flexible, then it is flexible.

Cor.: If a generic framework (G,p) in Rd is rigid then all generic
realizations of G in Rd are rigid.

A graph G is rigid (in dimension d) if some (any) generic realization of G
in Rd is rigid.
If G is rigid in dimension d , but no proper spanning subgraph of G is rigid
in dimension d , then G is isostatic in dimension d .

There are well known combinatorial characterisations of isostatic or rigid
graphs in R2 (e.g. Pollaczek-Geiringer, 1927, and Laman, 1970).
Such a characterisation has not yet been found for higher dimensions.

Bernd Schulze Frameworks with coordinated constraints November 2020 8 / 29



Coordinated rigidity: motivation and
basic set-up
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Motivation

Extension of work on frameworks on expanding spheres with
independently variable radii (Nixon, S., Tanigawa and Whiteley, 2018).

→

Bars in each coordination class are all incident to the same point (center
of the spheres) and bars in the same class all have the same length.

Want to consider a more general set-up: Identify k “coordination classes”
of edges which are allowed to change their length, subject to edge length
differences being preserved within each coordination class.

Understanding structures appearing in engineering or materials science
(e.g., mechanical linkages driven by coordinated pumps, or materials
expanding at different rates when heated).

Methodology for design of meta-materials.
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Examples in 2D

(a) (b)

(c)
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Coordinated framework

Let k ∈ N, and G = (V ,E) be a graph. A coordination map is a function
c : E → {0,1, . . . , k}. (G, c) is a k -coordinated graph.

Let Ei := c−1(i) for i ∈ {0,1, . . . , k}, where E0 is the set of uncoordinated
edges and Ei for i ∈ [k ] is the i-th coordination class.

We assume Ei 6= ∅ for all i = 1, . . . , k .

A placement (p, r) of (G, c) is given by a point configuration p and a
vector r ∈ Rk .

A coordinated framework (G, c,p, r) is given by a k -coordinated graph
(G, c) and a placement (p, r).

A coordinated framework is generic if p is generic.
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Equivalence and congruence

(G, c,p, r) and (G, c,q, s) are equivalent if

||p(j)− p(i)|| = ||q(j)− q(i)|| for all {i , j} ∈ E0

||p(j)− p(i)||+ r(`) = ||q(j)− q(i)||+ s(`) for all {i , j} ∈ E`, with ` ∈ [k ]

and they are congruent if they are equivalent and p and q are congruent.

p(1) p(2)

p(3)p(4)

q(1) q(2)

q(3)

q(4)

Figure: Two equivalent but non-congruent coordinated frameworks in the plane
with k = 1.
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Coordinated rigidity

(G, c,p, r) is (locally) rigid if there is a neighborhood U ⊂ R|V |d+k of (p, r)
so that if (q, s) ∈ U and (G, c,q, s) is equivalent to (G, c,p, r), then the
two frameworks are congruent.

A finite motion of (G, c,p, r) is a one-parameter family (G, c,pt , rt ) with
(p0, r0) = (p, r) and all the (G, c,pt , rt ) are equivalent to (G, c,p, r), for
t ∈ [0,1).
A finite motion is non-trivial if not all the (G, c,pt , rt ) are congruent to
(G, c,p, r). (G, c,p, r) is flexible if it has a non-trivial finite motion.

(a) (b) (c)

Not rigid is equivalent to flexible.
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Coordinated infinitesimal rigidity

By differentiating the constraints of a coordinated framework (G, c,p, r),
we obtain the following linear system (with unknowns (p′, r ′)):

[p(j)− p(i)] · [p′(j)− p′(i)]

‖p(j)− p(i)‖
= 0 for all {i , j} ∈ E0 (1)

[p(j)− p(i)] · [p′(j)− p′(i)]

‖p(j)− p(i)‖
+ r ′(`) = 0 for all {i , j} ∈ E`, with ` ∈ [k ] (2)

Lemma: There is a non-zero solution to (1)–(2) if and only if there is a
non-zero solution to:

[p(j)− p(i)] · [p′(j)− p′(i)] = 0 for all {i , j} ∈ E0

[p(j)− p(i)] · [p′(j)− p′(i)] + r ′(`) = 0 for all {i , j} ∈ E`, with ` ∈ [k ]
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Coordinated infinitesimal rigidity

An infinitesimal motion (p′, r ′) of (G, c,p, r) is a velocity field p′ supported
on p and a vector r ′ ∈ Rk such that
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Define 1(c) to be the |E | × k matrix that has as its columns the
characteristic vectors of the E`. Then the system above is equivalent to

R(p)p′ + 1(c)r ′ = 0

where R(p) is the rigidity matrix of the underlying framework (G,p).
The infinitesimal motions form a vector space that contains a(d+1

2

)
-dimensional subspace of motions (p′, ~0), with p′ a trivial

infinitesimal motion of (G,p).
We define (G,p, c, r) to be infinitesimally rigid if these are the only
infinitesimal motions, and infinitesimally flexible otherwise.
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Infinitesimal vs finite rigidity

Example of a nontrivial infinitesimal motion which extends to a finite
motion:

(a) (b) (c)

Note: A finite motion preserves the edge-length differences between
pairs of edges in the same coordination class.

||pt (j)−pt (i)||+rt (`)−||pt (v)−pt (u)||−rt (`) = ||pt (j)−pt (i)||−||pt (v)−pt (u)||

does not depend on rt (`), so it must be constant over the flex.

Theorem: Infinitesimal and finite rigidity are equivalent for generic
coordinated frameworks (by an Asimov-Roth type argument).
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Generic coordinated rigidity (via
redundant rigidity)
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Main theorem

Fix a dimension d and let n ≥ d . Let En be the edges of Kn. The matroid
Md,n on En of rank dn −

(d+1
2

)
that has as its bases the isostatic graphs

with n vertices in Rd is called the d-dimensional rigidity matroid of Kn.

The restriction of Md,n to the edges of an n vertex graph G is the rigidity
matroid of G, Md (G). Md,n is isomorphic to the linear matroid on the rows
of the rigidity matrix R(p) of Kn for any generic choice of p.

A subset E ′ = {e1, . . . ,ek} of edges in G is redundant if G \ E ′ has the
same rank as G in Md,n.

Theorem (S., Serocold, Theran, 2019): For d ≥ 1 and k ≥ 1, (G, c) is
rigid in dimension d if and only if

G is rigid in dimension d and
some transversal {e1, . . . , ek} of the coordination classes E1, . . . ,Ek is
redundant in Md (G).
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Reformulation of main result via matroid unions

Let E be a finite set and let E = {E1, . . . ,Ek} be a collection of disjoint
subsets of E . The transversal matroid TE (E) on E induced by the Ei has
as its bases the sets

{{e1, . . . ,ek} : ei ∈ Ei for all i ∈ [k ]}

If M1 and M2 are two matroids on a common ground set E , then the
matroid union M1 ∨M2 is defined as the matroid on E with bases that can
be partitioned into a basis of each Mi :

BM1∨M2 = {B ⊆ E : B = B1∪̇B2 with Bi a basis of Mi}

Theorem: Let (G, c) be a k -coordinated graph, and let TE (E) be the
transversal matroid on E induced by the coordination classes
E = {E1, . . . ,Ek}. Then the d-dimensional k -coordinated rigidity matroid
of (G, c) is the union Md (G) ∨ TE (E).
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Proof (necessity): key lemma

To prove necessity, we need the following specialised fact from matroid
theory (see, e.g., T. Brylawski, Constructions. in Theory of Matroids, N.
White, editor, Cambridge UniversityPress, 1986).

Lemma: Let M1 and M2 be two linearly representable matroids (over R)
on the same ground set. Then the matroid union M1 ∨M2 is also linearly
representable, and a representation may be obtained by a matrix

(A,DB)

where the rows of A represent M1, the rows of B represent M2, and D is a
diagonal matrix of algebraically independent transcendentals.
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Proof (necessity)

Let (G, c,p, r) be generic, and let E = {E1, . . . ,Ek} be the coordination
classes of (G, c).

By Lemma, (R(p),D1(c)) is a linear representation for Md (G) ∨ TE (E)
where D is an |E | × |E | diagonal matrix of alg. indep. transcendentals.
Since the coordinated rigidity matrix of (G, c,p, r) has the form
R+(p) = (R(p),1(c)), any independent set in the d-dimensional
k -coordinated rigidity matroid of (G, c) must also be independent in
Md (G) ∨ TE (E). So the rank of R+(p) is upper-bounded by

max
E ′⊂E

{
rankMd (G) (E \ E ′) + rankTE (E)(E

′)
}
≤ d |V | −

(
d + 1

2

)
+ k . (3)

Since (G, c,p, r) is infinitesimally rigid, we have equality throughout. Let
E ′ ⊆ E give the maximum in (3), and let G′ be induced by E \ E ′.
Since

rankMd (G) (E \ E ′) = d |V | −
(

d + 1
2

)
the framework (G′,p) is infinitesimally rigid. This makes the edges in E ′

redundant. Since rankTE (E)(E
′) = k , E ′ is a transversal of E .

Bernd Schulze Frameworks with coordinated constraints November 2020 22 / 29



Proof (necessity)

Let (G, c,p, r) be generic, and let E = {E1, . . . ,Ek} be the coordination
classes of (G, c).
By Lemma, (R(p),D1(c)) is a linear representation for Md (G) ∨ TE (E)
where D is an |E | × |E | diagonal matrix of alg. indep. transcendentals.

Since the coordinated rigidity matrix of (G, c,p, r) has the form
R+(p) = (R(p),1(c)), any independent set in the d-dimensional
k -coordinated rigidity matroid of (G, c) must also be independent in
Md (G) ∨ TE (E). So the rank of R+(p) is upper-bounded by

max
E ′⊂E

{
rankMd (G) (E \ E ′) + rankTE (E)(E

′)
}
≤ d |V | −

(
d + 1

2

)
+ k . (3)

Since (G, c,p, r) is infinitesimally rigid, we have equality throughout. Let
E ′ ⊆ E give the maximum in (3), and let G′ be induced by E \ E ′.
Since

rankMd (G) (E \ E ′) = d |V | −
(

d + 1
2

)
the framework (G′,p) is infinitesimally rigid. This makes the edges in E ′

redundant. Since rankTE (E)(E
′) = k , E ′ is a transversal of E .

Bernd Schulze Frameworks with coordinated constraints November 2020 22 / 29



Proof (necessity)

Let (G, c,p, r) be generic, and let E = {E1, . . . ,Ek} be the coordination
classes of (G, c).
By Lemma, (R(p),D1(c)) is a linear representation for Md (G) ∨ TE (E)
where D is an |E | × |E | diagonal matrix of alg. indep. transcendentals.
Since the coordinated rigidity matrix of (G, c,p, r) has the form
R+(p) = (R(p),1(c)), any independent set in the d-dimensional
k -coordinated rigidity matroid of (G, c) must also be independent in
Md (G) ∨ TE (E). So the rank of R+(p) is upper-bounded by

max
E ′⊂E

{
rankMd (G) (E \ E ′) + rankTE (E)(E

′)
}
≤ d |V | −

(
d + 1

2

)
+ k . (3)

Since (G, c,p, r) is infinitesimally rigid, we have equality throughout. Let
E ′ ⊆ E give the maximum in (3), and let G′ be induced by E \ E ′.
Since

rankMd (G) (E \ E ′) = d |V | −
(

d + 1
2

)
the framework (G′,p) is infinitesimally rigid. This makes the edges in E ′

redundant. Since rankTE (E)(E
′) = k , E ′ is a transversal of E .

Bernd Schulze Frameworks with coordinated constraints November 2020 22 / 29



Proof (necessity)

Let (G, c,p, r) be generic, and let E = {E1, . . . ,Ek} be the coordination
classes of (G, c).
By Lemma, (R(p),D1(c)) is a linear representation for Md (G) ∨ TE (E)
where D is an |E | × |E | diagonal matrix of alg. indep. transcendentals.
Since the coordinated rigidity matrix of (G, c,p, r) has the form
R+(p) = (R(p),1(c)), any independent set in the d-dimensional
k -coordinated rigidity matroid of (G, c) must also be independent in
Md (G) ∨ TE (E). So the rank of R+(p) is upper-bounded by

max
E ′⊂E

{
rankMd (G) (E \ E ′) + rankTE (E)(E

′)
}
≤ d |V | −

(
d + 1

2

)
+ k . (3)

Since (G, c,p, r) is infinitesimally rigid, we have equality throughout. Let
E ′ ⊆ E give the maximum in (3), and let G′ be induced by E \ E ′.

Since

rankMd (G) (E \ E ′) = d |V | −
(

d + 1
2

)
the framework (G′,p) is infinitesimally rigid. This makes the edges in E ′

redundant. Since rankTE (E)(E
′) = k , E ′ is a transversal of E .

Bernd Schulze Frameworks with coordinated constraints November 2020 22 / 29



Proof (necessity)

Let (G, c,p, r) be generic, and let E = {E1, . . . ,Ek} be the coordination
classes of (G, c).
By Lemma, (R(p),D1(c)) is a linear representation for Md (G) ∨ TE (E)
where D is an |E | × |E | diagonal matrix of alg. indep. transcendentals.
Since the coordinated rigidity matrix of (G, c,p, r) has the form
R+(p) = (R(p),1(c)), any independent set in the d-dimensional
k -coordinated rigidity matroid of (G, c) must also be independent in
Md (G) ∨ TE (E). So the rank of R+(p) is upper-bounded by

max
E ′⊂E

{
rankMd (G) (E \ E ′) + rankTE (E)(E

′)
}
≤ d |V | −

(
d + 1

2

)
+ k . (3)

Since (G, c,p, r) is infinitesimally rigid, we have equality throughout. Let
E ′ ⊆ E give the maximum in (3), and let G′ be induced by E \ E ′.
Since

rankMd (G) (E \ E ′) = d |V | −
(

d + 1
2

)
the framework (G′,p) is infinitesimally rigid. This makes the edges in E ′

redundant. Since rankTE (E)(E
′) = k , E ′ is a transversal of E .

Bernd Schulze Frameworks with coordinated constraints November 2020 22 / 29



Proof (sufficiency): intuitive idea

Suppose H ⊂ G is spanning, isostatic and F = E \ E(H) contains a
transversal T = {e1, . . . ,ek} of the coordination classes E .

Let G′ = H + T . Goal: Construct a coordinated framework (G′, c,p, r)
that is isostatic.
Lemma: Fix a dimension d and let G be a graph with n ≥ d vertices. A
subset of edges E ′ = {e1, . . . ,ek} is redundant if and only if for any
generic d-dimensional framework (G,p) there are equilibrium stresses
ω1, . . . , ωk so that ωi (ei ) 6= 0 for i ∈ [k ] and ωi (ej ) = 0 for i 6= j ∈ [k ].

Idea of sufficiency proof : find generic p so that for the stresses ω1, . . . , ωk
of (G′,p) from the Lemma, the entries not in the left-hand k × k block of

W =

ωT
1
...
ωT

k

 =

1 ∗
. . . ∗

1 ∗


are very small. Then X = W1(c) is close to the identity, and so full rank.
Idea for latter step: make the edges e1, . . . ,ek all very short. This makes
the stress coefficients on them, relatively, large.
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Proof (sufficiency): key lemmas

Lemma 1: Suppose that (G,p) is a generic framework so that (G \ e,p)
is isostatic (and hence e is redundant). Let e = {i1, i2} and define pt to be
like p except pt (i2) = tp(i2) + (1− t)p(i1). Let ωt be the equilibrium stress
of (G,pt ) with ωt (e) = 1. Then for all other edges f , we have for generic
pt ,

|ωt (f )| → 0

as t → 0.

Lemma 2: Suppose that (G,p) is a generic framework so that (G \ e,p)
is isostatic (and hence e is redundant). Then (G,p) has a unique
equilibrium stress ω where ω(e) = 1 and for all other edges f , we have

ω(f ) = (det R i1,...,id
e→× (p))−1 det(R i1,...,id

f→e (p))

where the ij are any tie-down vertices and R i1,...,id
f→e is obtained by removing

the row corresponding to e and then replacing the row corresponding to f
with it and R i1,...,id

e→× by simply dropping the row corresponding to e.
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Proof (sufficiency)

Fix constants ε1 � ε2 � · · · � εk .

Start with generic (H,p). Set H1 = H ∪ {e1}. By genericity, e1 is
redundant in (H1,p). Using Lemma 1, find a generic configuration p1 so
that the unique equilibrium stress ω1 of (H,p1) has ω1(e1) = 1 and
coefficients on all other edges of magnitude ≤ ε1.
Repeat the process on H2 = H ∪ {e2} starting from (H,p1). Because of
the transversal structure, the second entry of ω21(c) becomes much
larger than the other entries.
During this step, the equilibirum stress corresponding to ω1 will change
continuously. However, using Lemma 2, we see that the change in the
stress coefficients is bounded by a constant ∆. If ∆ε1 < 1 we can
continue. This is guaranteed by ε1 � ε2.
Eventually we arrive at a configuration pk which is generic and has
W1(c) diagonally dominant.
Thus, generically, the matrix

[R(p) 1(c)]

has empty co-kernel, and hence rank dn −
(d+1

2

)
+ k .
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Examples: d=k=2

e1

e2

(a) (b)
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Further comments and open questions
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Further comments and open questions

The main theorem implies that for d = 1,2, there is a deterministic,
polynomial time algorithm to check whether a k -coordinated graph (G, c)
is generically rigid in Rd :
We have deterministic independence oracles for the matroids Md,n when
d = 1,2, and for TE (E).
Edmonds’ algorithm yields a deterministic polynomial time algorithm for
Md,n ∨ TE (E) for these d and any k .

For d = 2 and k = 1, the main theorem can be proved directly using a
Henneberg-type construction sequence (see Serocold’s thesis).

Further work:
Extensions to other constraint systems (body-bar, direction-length, etc.)
Symmetric and periodic frameworks (partial results in Serocold’s thesis)
Coordination classes maintaining sums or ratios of edge lengths
Global coordinated rigidity
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Thank you!

Questions?

Reference:

Bernd Schulze, Hattie Serocold and Louis Theran, Frameworks with
coordinated edge motions, arXiv:1807.05376.
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