A Toroidal Maxwell-Cremona-Delaunay Correspondence

Patrick Lin

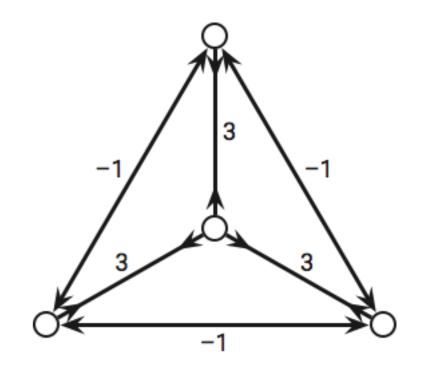
University of Ilinois, Urbana-Champaign

joint work with Jeff Erickson

Equilibrium stress

[Maxwell 1864]

- ► Fix a straight-line plane graph G
- Assign a stress ω_e to every edge e
 - ▶ $\omega_e > 0 \Leftrightarrow e$ pulls inward
 - ▶ $\omega_e < 0 \Leftrightarrow e$ pushes outward



• ω is an equilibrium stress for G iff every vertex is a weighted average of its neighbors:

$$\sum_{v} \omega_{uv} \cdot (v - u) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

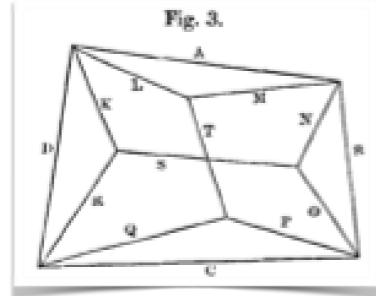
Reciprocal Diagram

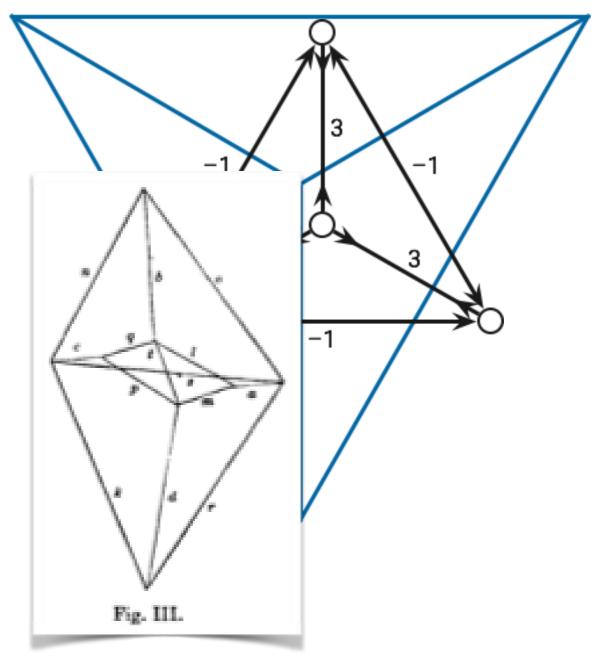
Equilibrium stress for $G \Leftrightarrow$ reciprocal diagram G^*

$$e^* \perp e$$

 $|e^*| = |\omega_e| \cdot |e|$

- Faces of G* certify equilibrium of G
- G* may not be an *embedding*





Equilibrium stress for $G \Leftrightarrow polyhedral \ lifting \hat{G}$

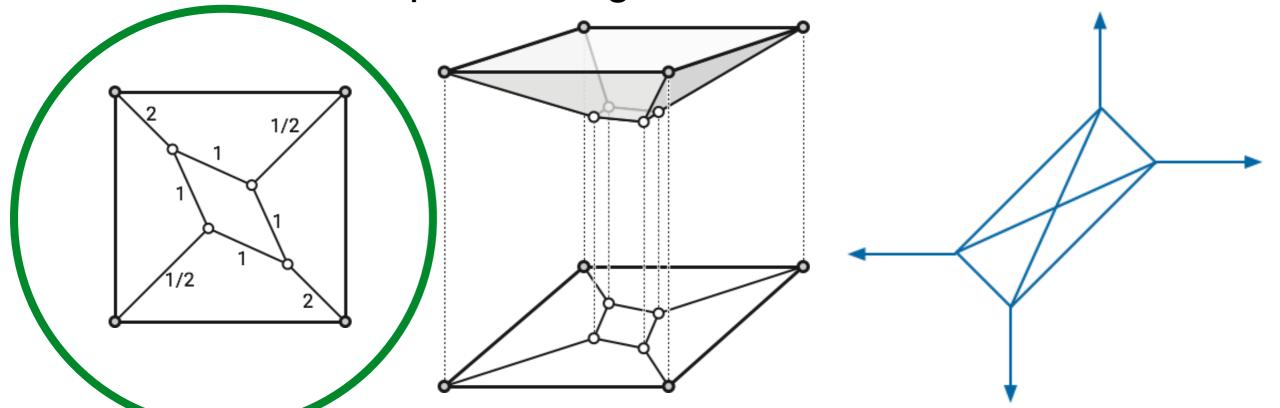
- \hat{G} is a straight-line graph in 3-space, not all in one plane
 - ▶ G is the orthogonal projection of \hat{G}
 - ▶ Every face of G lifts to a planar polygon in \hat{G}
- ► For any *interior* edge e:
 - ▶ \hat{e} is convex $\Leftrightarrow \omega_e > 0$
 - ▶ \hat{e} is concave $\Leftrightarrow \omega_e < 0$

Derece Strainy 2015

[Borcea Streinu 2015]

If the outer face of G is convex and $\omega_e > 0$ for every *interior* edge e, then the following are equivalent:

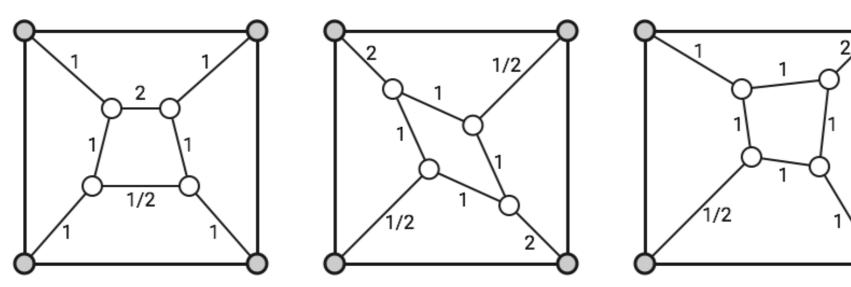
- ▶ Interior equilibrium stress ω for G
- Convex polyhedral lift Ĝ
- Embedded reciprocal diagram G*



- Suppose G is 3-connected and outer face of G is convex
- Assign arbitrary positive stresses $\omega_e > 0$ to interior edges e
- Minimize energy function $\Phi(G, \omega) := \sum_{\alpha} \omega_e \cdot |e|^2$

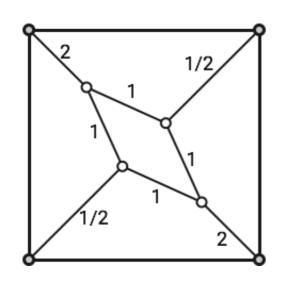
▷ Solve the Laplacian linear system $\sum \omega_{uv} \cdot (v - u) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

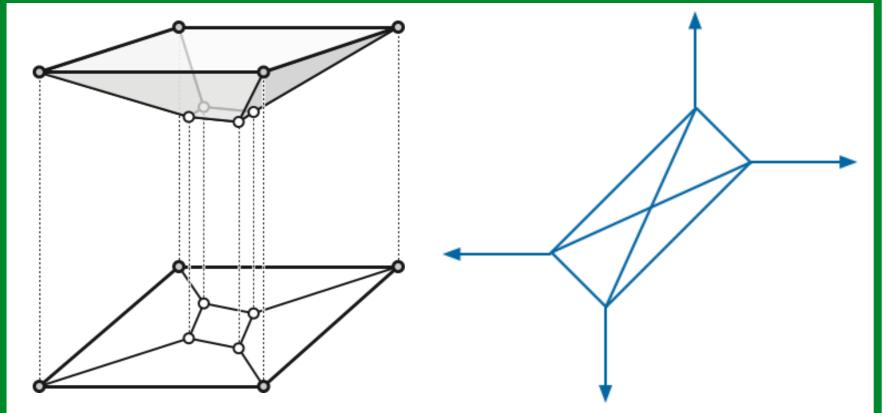
• Straight-line *embedding* of G with interior equilibrium stress $\omega \Rightarrow$ convex lift \Rightarrow convex faces



If the outer face of G is convex and $\omega_e > 0$ for every *interior* edge *e*, then the following are equivalent:

- ▶ Interior equilibrium stress ω for G
- Convex polyhedral lift Ĝ
- Embedded reciprocal diagram G*

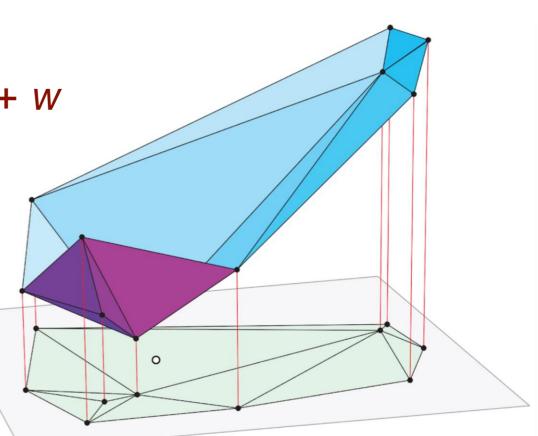




(Weighted) Delaunay/Voronoi lifting

- For any weighted point p = ((a,b),w) in the plane, define
 - ▶ Lifted point $p' = (a, b, (a^2+b^2)/2 w)$
 - ▶ Dual plane p^* : $z = ax + by (a^2+b^2)/2 + w$
- Delaunay(P) = projection of lower convex hull of P'
 - "regular / coherent subdivision"
- Voronoi(P) = projection of upper envelope of P*
 - "power / Laguerre diagram"

[Brown 1980, Seidel 1982, Edelsbrunner Seidel 1985]



[[]Devadoss O'Rourke 2011]

Reciprocal = Voronoi

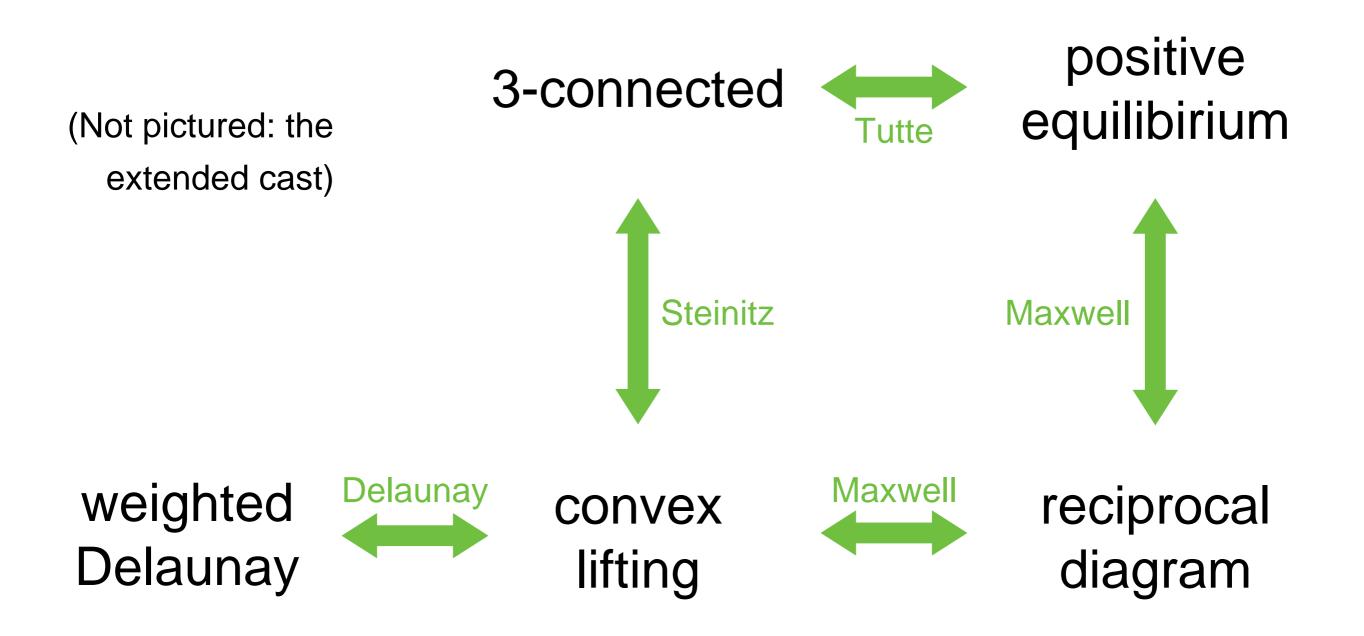
- Every reciprocal diagram is a weighted Voronoi diagram
 - Lifting = Lifting

Maxwell-Cremona-Delaunay Correspondence

For any plane graph G with a convex outer face, the following are (essentially) equivalent:

- Positive equilibrium stress ω
- Reciprocal embedding of G^*
- Convex lifting
- Delaunay vertex weights

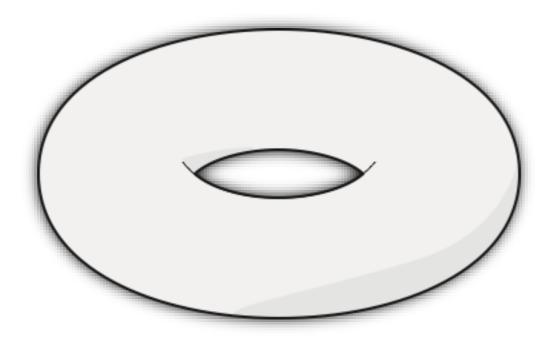
Tutte + Maxwell + Delaunay



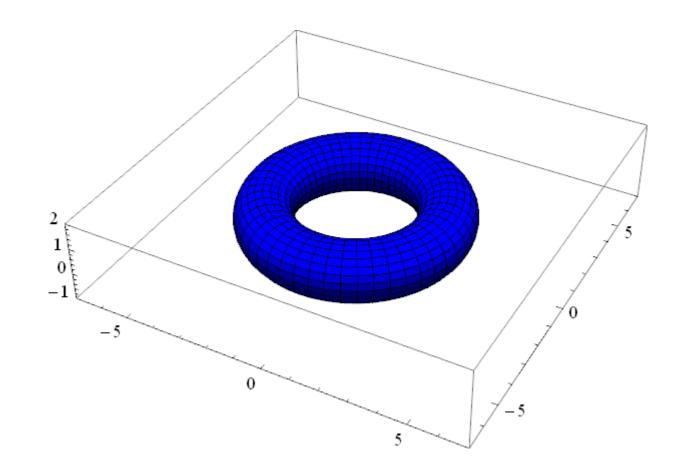
What happens on surfaces?

Finally we may remark that very little is known about representations of graphs in the projective plane and higher surfaces (4).

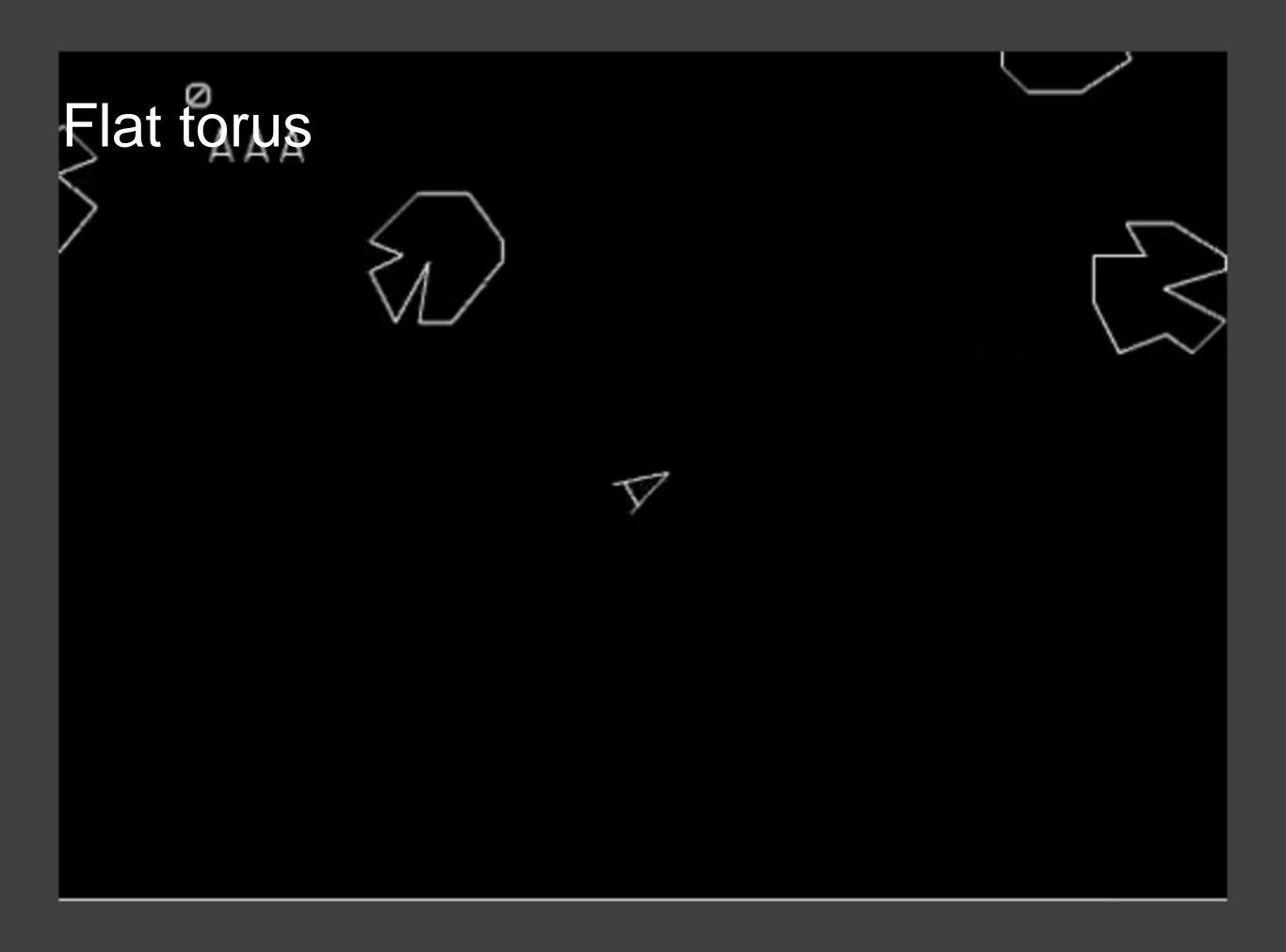
Today: flat tori

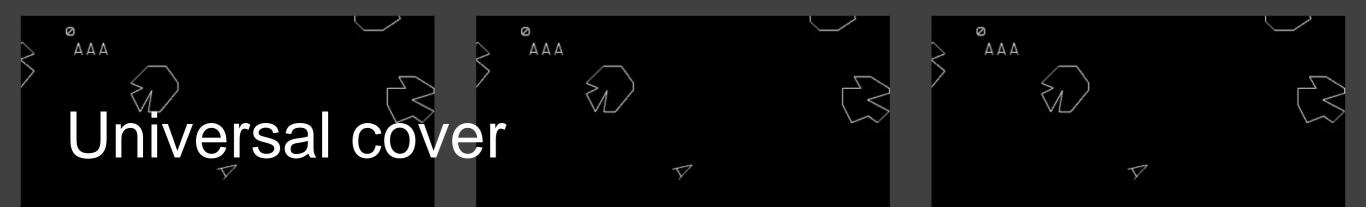


Flat torus



[Podkalicki (Mathematica.SE)]





Tile the plane with translates of the parallelogram

Ø

AAA

V

V

Universal cover

V

Ø

AAA

Tile the plane with translates of the parallelogram

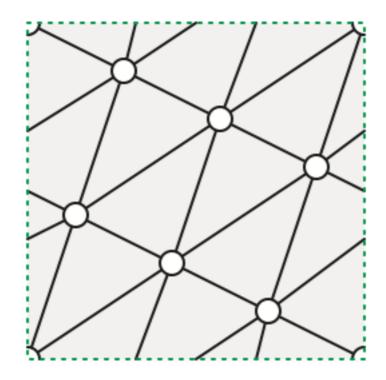
- Different parallelograms induce different geometries
 - Parallelogram can be described by 2x2 matrix M

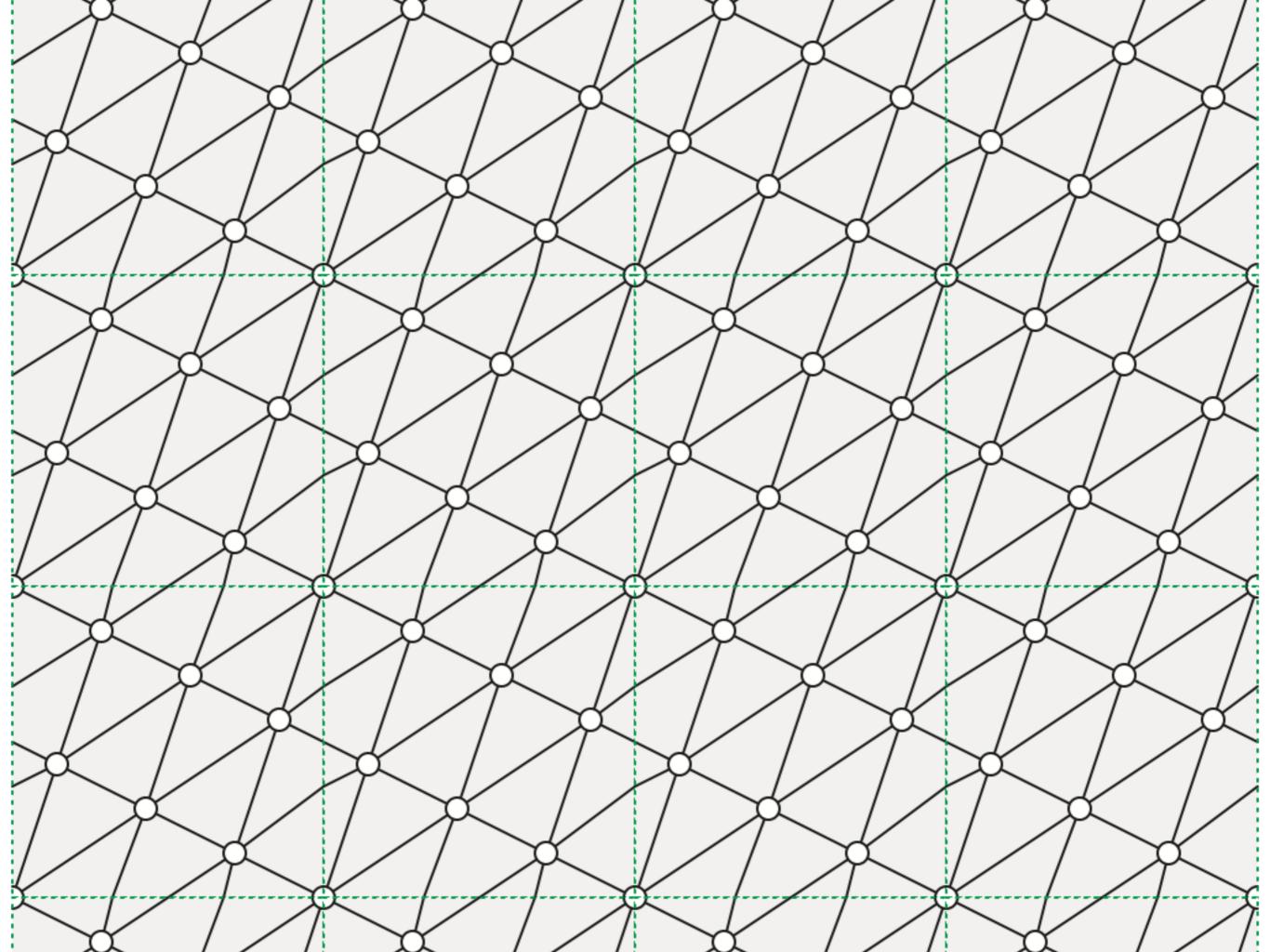
ø AAA		AAA	
Ţ	∇	∇	

V

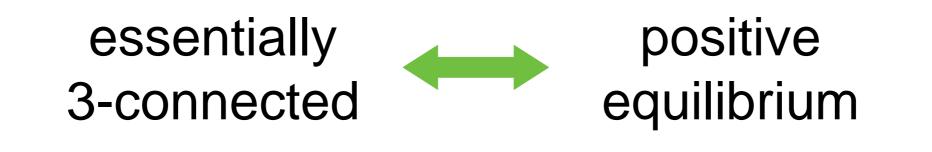
Flat torus graphs

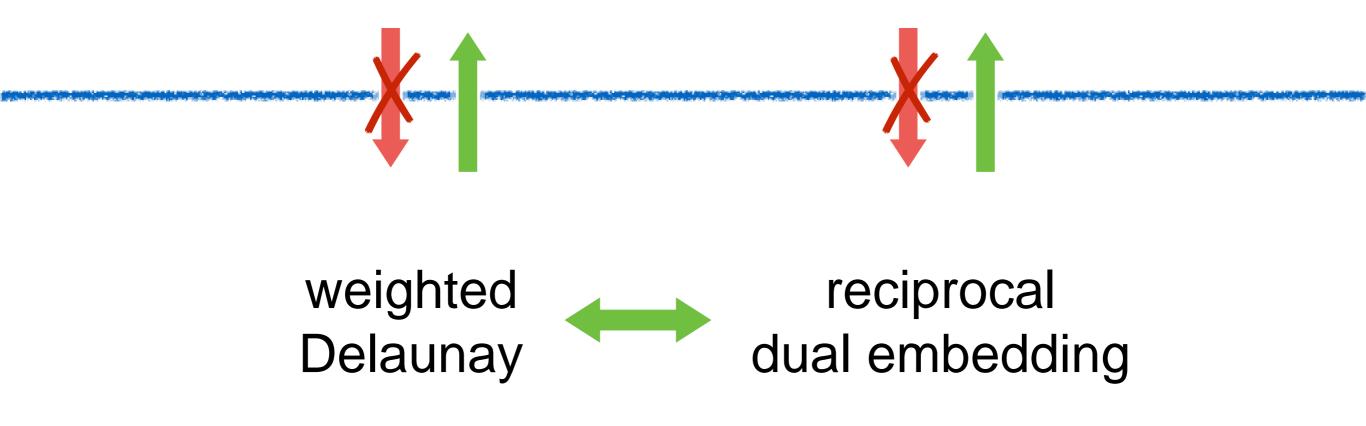
- Geodesics are "straight lines"
- Torus graph = geodesic embedding on some flat torus
 - Ifts to infinite plane graph in universal cover





On the flat torus



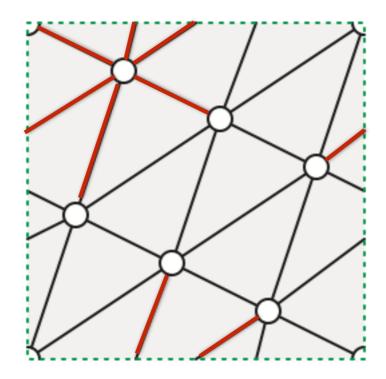


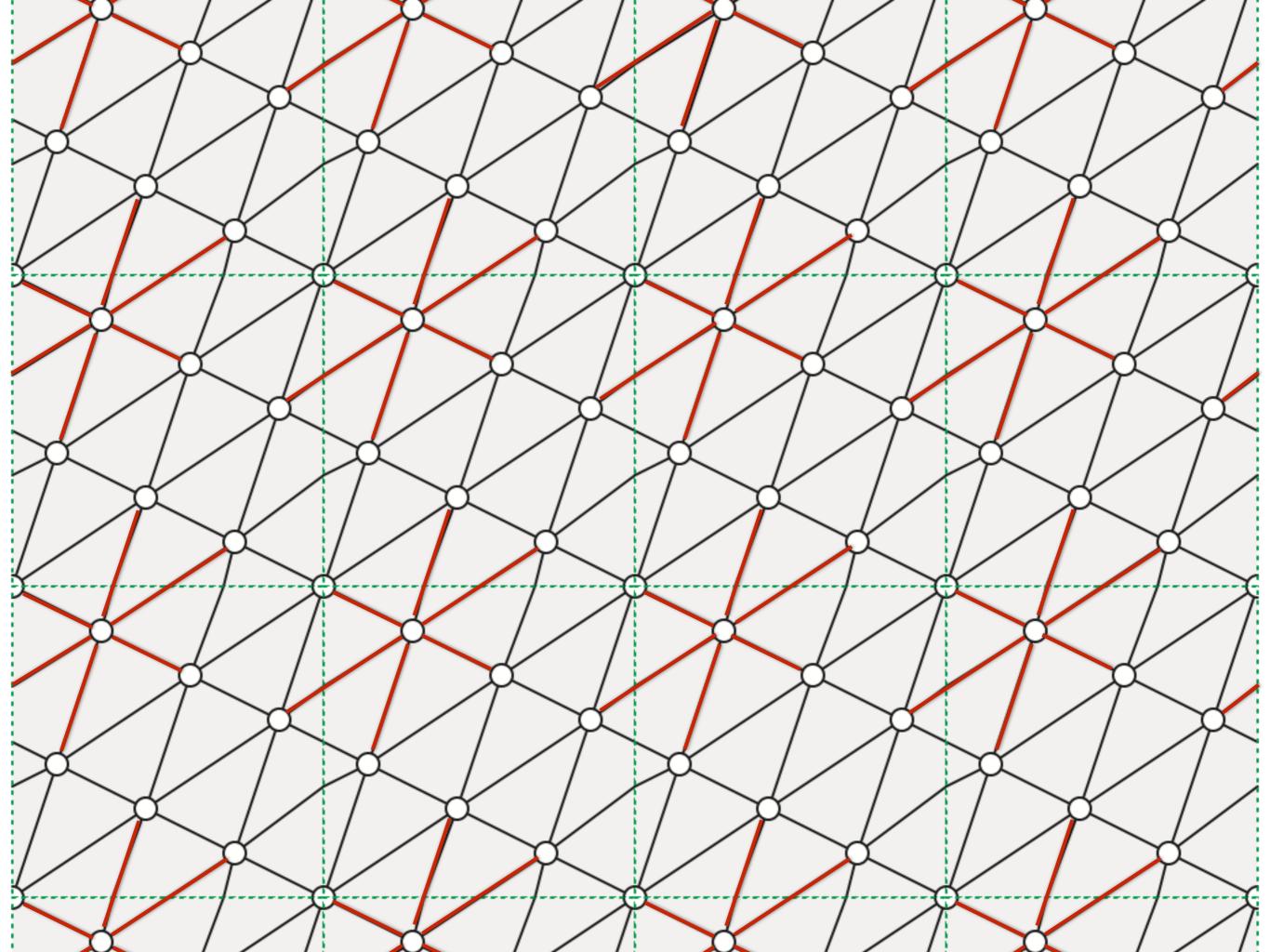
Equilibrium is local

 ω is an equilibrium stress for G if and only weighted edge vectors around each vertex sum to zero.

$$\sum_{v} \omega_{uv} (\hat{\mathbf{v}} - \hat{\mathbf{u}}) = \sum_{v} \omega_{uv} (\mathbf{v} - \mathbf{u} + [\mathbf{u} \rightarrow \mathbf{v}]) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

• Equivalently, universal cover (\hat{G}, ω) is in equilibrium

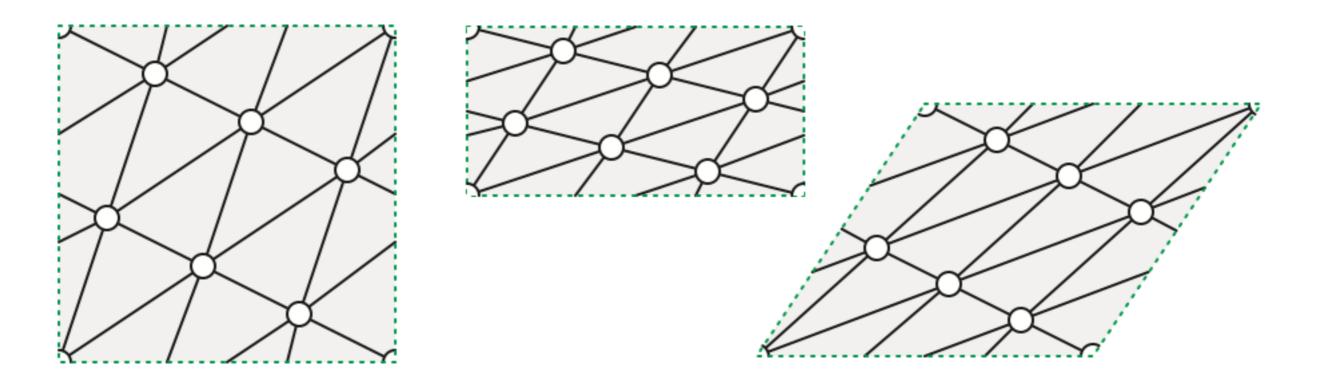




Equilibrium is shape-agnostic

• If ω is an equilibrium stress for G on *any* flat torus, then ω is an equilibrium stress for G on *every* flat torus.

$$\sum_{v} \omega_{uv} \cdot (M\hat{v} - M\hat{u}) = M \cdot \sum_{v} \omega_{uv} \cdot (\hat{v} - \hat{u}) = M \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$



What about Tutte?

Every essentially 3-connected graph on any flat torus is *isotopic to* a positive equilibrium embedding

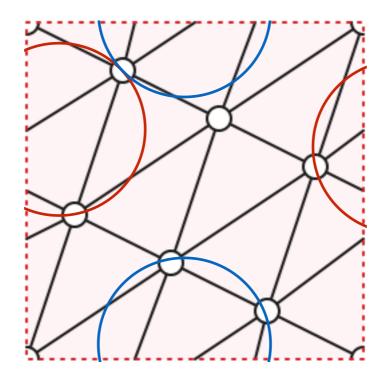
- ▶ Unique (*up to translation*) for *any* positive stress vector ω >0.
- ▷ Isotopic drawing of *G* minimizing $\Phi(G, \omega) := \sum \omega_e \cdot |e|^2$
- Solution to Laplacian linear system

$$\sum_{v} \omega_{uv} (\hat{v} - \hat{u}) = \sum_{v} \omega_{uv} (v - u + [u \rightarrow v]) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

[Y. Colin de Verdière 1990, Lovász 2004, Steiner Fischer 2004, Gortler Gotsman Thurston 2006]

Delaunay is local

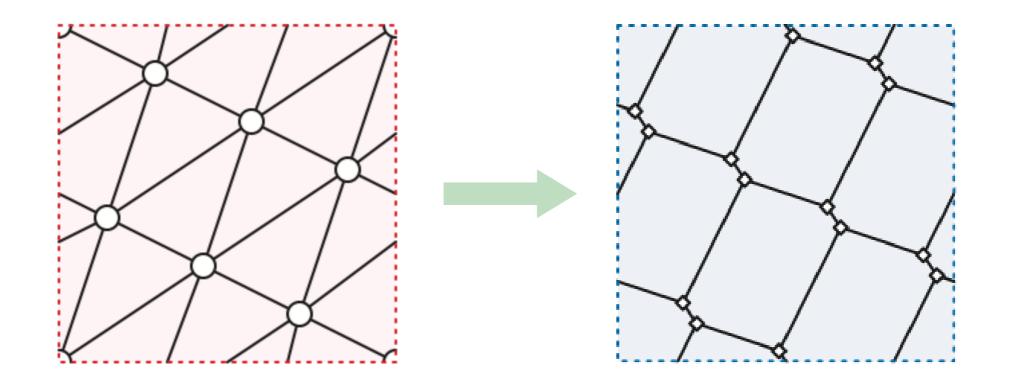
For fixed vertex weights, G is Delaunay iff every edge is locally Delaunay
[Bobenko Springborn 2005]



Reciprocal diagrams

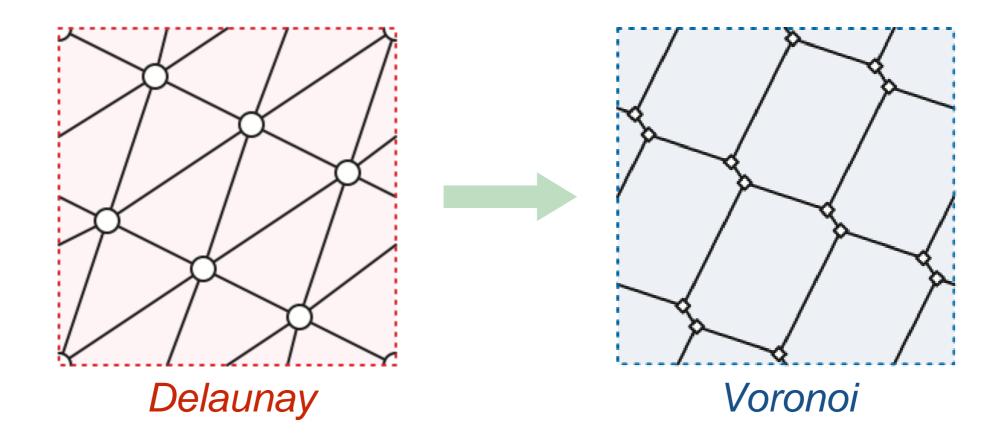
Geodesic embedding of G* on the same flat torus as G

 $e \perp e^*$



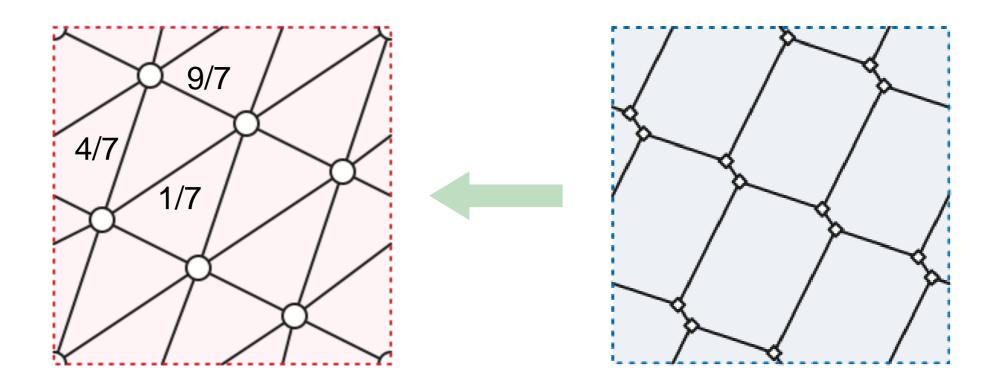
Delaunay ⇔ reciprocal

Any vertex weights that make G Delaunay define a reciprocal diagram G* and vice versa.



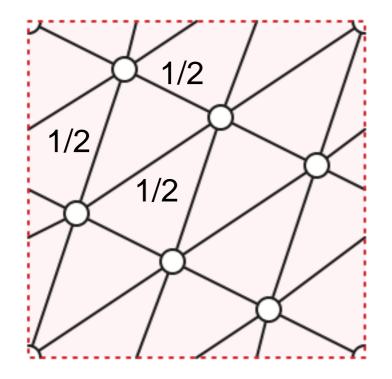
Reciprocal \Rightarrow equilibrium

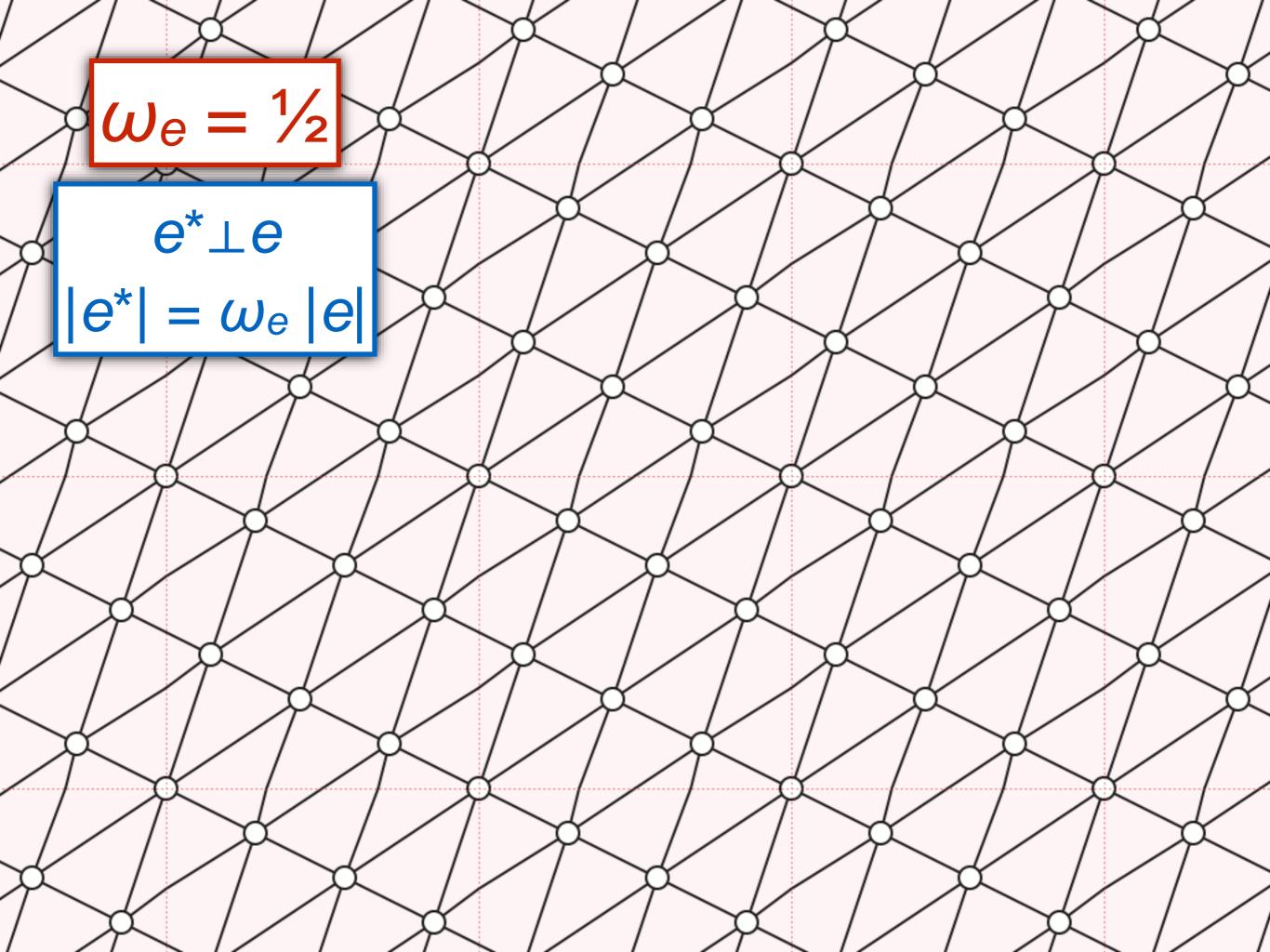
• Any reciprocal diagram defines an equilibrium stress ω where $\omega_e = |e^*| / |e|$.

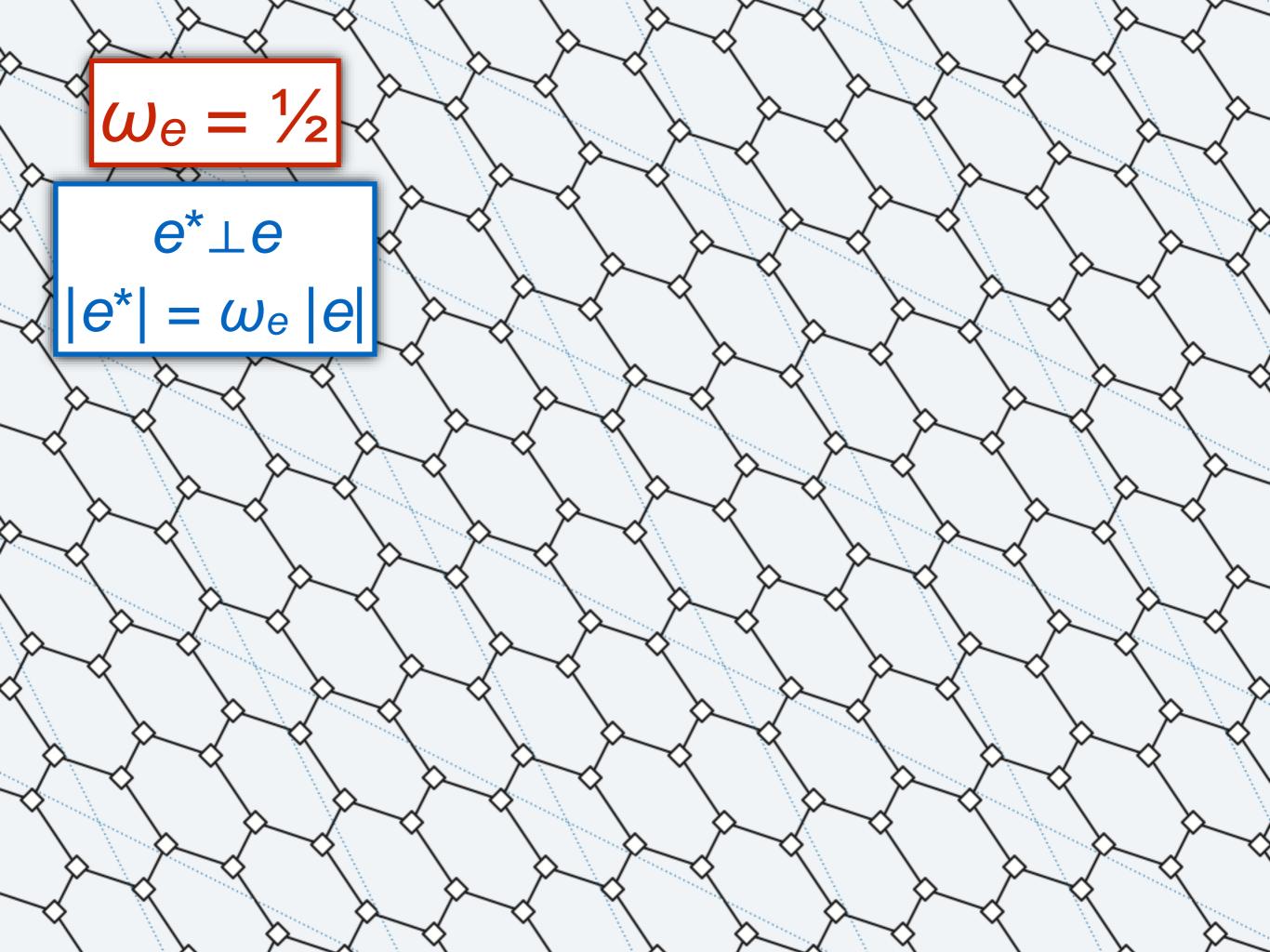


Equilibrium *⇒* reciprocal

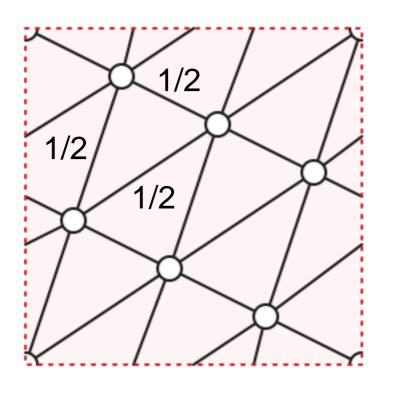
[Erickson, L.]







- An equilibrium stress ω does not necessarily define a reciprocal diagram with ω_e = |e^{*}| / |e|
 - Reciprocality is NOT shape agnostic!



- ► Fix a graph *G* on the *unit square* flat torus
- Any equilibrium stress ω for G defines three parameters:

$$\alpha := \sum_{e} \omega_{e} \Delta x_{e}^{2}$$
$$\beta := \sum_{e} \omega_{e} \Delta y_{e}^{2}$$
$$\gamma := \sum_{e} \omega_{e} \Delta x_{e} \Delta y_{e}$$

• ω is a reciprocal stress for G if and only if $(\alpha, \beta, \gamma) = (1, 1, 0)$

[Erickson, L.]

Equivalently, ω is a reciprocal stress for G on the unit square flat torus if and only if

$$\sum_{e} \omega_{e} \cdot (\Delta x_{e}^{2} + \Delta y_{e}^{2}) = 2 \qquad \text{Tutte energy (scale)}$$

$$\sum_{e} \omega_{e} \cdot (\Delta x_{e}^{2} - \Delta y_{e}^{2}) = 0 \qquad \text{Orthogonal anisotropy} \quad \clubsuit$$

$$\sum_{e} \omega_{e} \cdot \Delta x_{e} \cdot \Delta y_{e} = 0 \qquad \text{Diagonal anisotropy} \quad \checkmark$$

- For any cocycle in a reciprocal diagram G*, the sum of its displacement vectors must equal its *homology class*.
- ► Suffices to check two cycles in a *homology basis* of *G**
- ► Four constraints (*x* and *y* for two cycles), but one is redundant
- Displacement vectors in G define homology basis of circulations in G*

$$\alpha := \sum_{e} \omega_{e} \Delta x_{e}^{2}$$
$$\beta := \sum_{e} \omega_{e} \Delta y_{e}^{2}$$
$$\gamma := \sum_{e} \omega_{e} \Delta x_{e} \Delta y_{e}$$

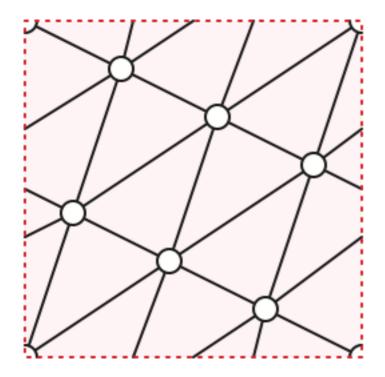
- Blah blah blah homology class.
- Blah blah two cycles blah blah blah homology basis.
- Blah blah four constraints blah blah one redundant.
- Blah blah displacement blah blah circulations blah blah.

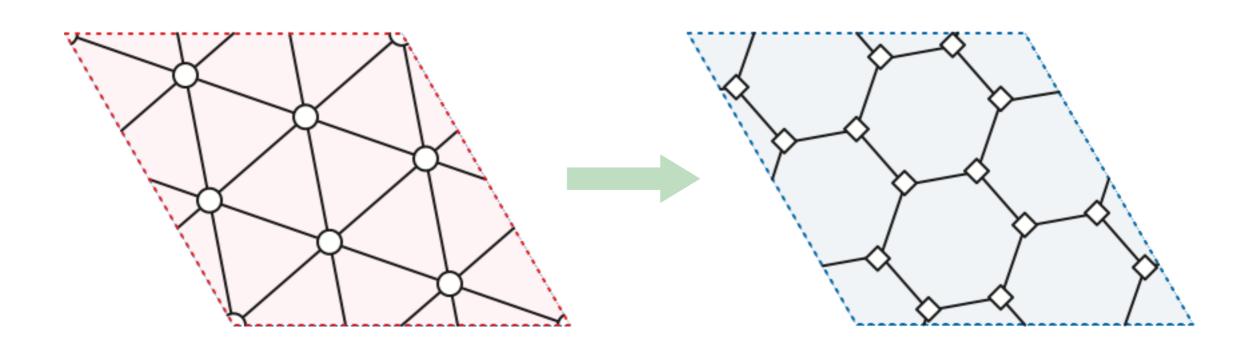
$$\alpha := \sum_{e} \omega_{e} \Delta x_{e}^{2}$$
$$\beta := \sum_{e} \omega_{e} \Delta y_{e}^{2}$$
$$\gamma := \sum_{e} \omega_{e} \Delta x_{e} \Delta y_{e}$$

Reciprocal conditions

[Erickson, L.]

- ω is reciprocal for G on some flat torus iff $\alpha\beta \gamma^2 = 1$.
 - ▶ This is just a scaling condition.
- If $\alpha\beta \gamma^2 = 1$, then ω is reciprocal for G on any flat torus similar to T_M , where $M = \begin{bmatrix} \beta & -\gamma \\ 0 & 1 \end{bmatrix}$.





Conclusion

- Every essentially 3-connected torus graph is homotopic to a weighted Delaunay complex on some flat torus.
 - This also follows from generalizations of Koebe-Andreev-Thurston circle packing. [Y. Colin de Verdière 1991, Mohar 1997]
 - But we get all possible Delaunay embeddings.

Open questions

- What happens on more complicated surfaces?
 - Spring embeddings work (at least for simplicial complexes)
 [Y. Colin de Verdière 1990]
 - Delaunay triangulations work (at least for simplicial complexes) [Bogdanov Deviller Ebbens Iordanov Teillaud Vegter... 2014–2020]
 - But how are the two related?

Is this good for anything?