
The pure condition Louis Theran (StA)

Thim (While - Whiteley '83): IS G is GLR and
m= dn- (d+2) The set of configurations p s.t.
(G, P) inf. flexible is cut at by a single backet (F)
Phynomical (in diss vertices
$$f_{i} = (P_{i} ; j)$$
) it you have point
· Called the pure condition CG.
Sketch: Use the 1st thim: Special positions are
projectively inversant. (You can gan bet not box stresses.)
· Some collection of brackets Pelys Work. (invol point 1)
· Main point : dispersiveries du-(dt) [C_{e} = det of
the new of distribution $f_{e} = (P_{e} ; f_{e}) = P_{e} = (P_{e} ; f_{e}) = ($

Advertisements:

https://www.researchgate.net/publication/ 244505791_The_Algebraic_Geometry_of_Stresses_in_Frameworks

get Ice Paper!

http://www.fields.utoronto.ca/activities/20-21/constraint

upcoming program on rigidity

Conj / questions (Walter): the 2d if CG factors, 15 nere a proper rigid subjection) If Ca has a fuctor ft K7.2 and f(p)=0, does (G,p) have eq. stress pace dim 71? (horder = K) Er: Kuis has a dag 2 Suches 5 P1 P4] dies have 2 stresses (e.g. by Bolke-Rotz) Convert from Walter: Pre curser:

Assorts work in c. 1910.