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Outline

 What is structural identifiability? What to do with an unidentifiable
model?

e How can we use matroids?
 What is observability?
e How canh we use matroids?

* Open questions



Structural |dentifiability

ODE Model:

x(t) = f(x(t),u(t),p)
y(t) = g(x(t),p)

x(t) state variable vector
u(t) input vector

y(t) output vector

p parameter vector
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y(t) output vector - KNOWN
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Structural |dentifiability

ODE Model:

x(t) = f(x(t),u(t),p)
y(t) = g(x(t),p)

x(t) state variable vector - UNKNOWN
u(t) input vector - KNOWN

y(t) output vector - KNOWN

p parameter vector - UNKNOWN

Structural identifiability: which unknown parameters can be
determined from known input/output data?




Drug exchange

Loss from blood

Loss from organ




Y4 Example: Linear 2-
Compartment Model

x1 = —(agq + az1)xq +aqx; + Uy
Xy = Ap1%1 — (Ao + aq2)%>

Y1 = Xq




Y4 Example: Linear 2-
Compartment Model

Can we
determine
parameters

Ao1, Ap2, A12, A21
from input-
output data?

x1 = —(agq + az1)xq +aqx; + Uy
Xy = Ap1%1 — (Ao + aq2)%>

Y1 = Xq




How to test identifiability

e Have ODE model:

X1 = —(ag1 + az1)x1 + aq2x + Uy
Xy = Ap1%1 — (Ag2 + aq2) X3

Y1 = X1



How to test identifiability

e Have ODE model:

x1 = —(ag1 + az1)x1 + a2x, + 14
Xy = Ap1%1 — (Ag2 + aq2) X3
Vi =X1

* Have known variables: 1, v,



How to test identifiability

e Have ODE model:

x1 = —(ag1 + az1)xq + ax, + 14
Xp = Ap1%1 — (Ag2 + aq2) X,
Y1 =X1

* Have known variables: 1, v,

* Can we eliminate unknown variables x4, x{, x5, x5 ?



How to test identifiability

e Have ODE model:

x1 = —(ag1 + az1)xq + ax, + 14
Xp = Ap1%1 — (Ag2 + aq2) X,
Y1 =X1

* Have known variables: 1, v,

* Can we eliminate unknown variables x4, x{, x5, x5 ?
* Must determine input-output equation (in terms of

ul) J’1, u1; yl' )
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* Determine input-output equations using differential elimination
e Obtain coefficient map
* Test injectivity of coefficient map
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Structural |dentifiability

 Differential algebra method (Ollivier 1990, Ljung-Glad 1994)
* Determine input-output equations using differential elimination
e Obtain coefficient map
* Test injectivity of coefficient map

* Big picture goal: Another approach? Matroids?

 Example
Uy /33’1
azq X1 = —(ag1 + az1)x1 + a12x2 + Uy
D . .
a, Xp = Ap1X1 — (Apz + aq3) X,
Aop1 A2

Y1 = X1



Determine Iinput-output equations

Use differential elimination:

x1 = —(ag1 + az1)xy + a;px, +uy y1 = —(ag1 + az1)y1s + ai2x; + uq

. Sub for x4, x4 .
Xp = Ap1X1 — (Agz + aq3) X, —] X = A1y — (Agpz + aq3) X,

X1 =M1 Y1=*1



Determine Iinput-output equations

Use differential elimination:

X1 = —(ag1 + az1)x1 + aq2x, + Uy y1 = —(ag1 + az1)ys + ax, +uy
. Sub for x4, x4 .

Xp = Ap1X1 — (Agz + aq3) X, —] X = A1y — (Agpz + aq3) X,

X1 =M1 Y1=*1

x; = (y1 + (ap1 + a1)y; —uy)/ass

Solve for x,

—p X2 = 0211 ~ (Qo2 + A12) X3

Y1 = X1



Determine Iinput-output equations

Use differential elimination:

X1 = —(ag1 + az1)x1 + aq2x, + Uy y1 = —(ag1 + az1)ys + ax, +uy
. Sub for x4, x4 .

Xp = Ap1X1 — (Agz + aq3) X, —] X = A1y — (Agpz + aq3) X,

X1 =M1 Y1=*1
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Solve for x, |, Diff. x5
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Y1 = X1



Determine Iinput-output equations

Use differential elimination:

X1 = —(ag1 + az1)x1 + aq2x, + Uy y1 = —(ag1 + az1)ys + ax, +uy
. Sub for x4, x4 .

Xp = Ap1X1 — (Agz + aq3) X, —] X = A1y — (Agpz + aq3) X,

X1 =M1 Y1=*1

x; = (y1 + (ap1 + a1)y; —uy)/ass

Solve for x, |, Diff. x5

—p X2 = A21YV1 (agz + asz) x; — X, = (V1 + (g1 + a1)Y1 — Uq) /012

Y1 = X1

Sub for x,, x,

), + (Ag1 + Qg2 + A1 + A21) Y1 + (Ag1A12 + Ap2021 + Ag1a02)Y1 = Uq + (g2 + a12)Uy



Obtain coefficient map

Assume we can uniquely determine coefficients from perfect data

V1 + (ag1 + gz + a2 +az1)y; + (ag1aq2 + Ag2az1 + Ag1a02)Y1 = U + (Ag2 + aq2)Ug



Obtain coefficient map

Assume we can uniquely determine coefficients from perfect data
V1 + (ap1 + agz + asz +az1)y1 + (ap1a12 + ag2021 + Ag1a02)y1 = Uy + (Apz + ag2)uy
Evaluate at many time instances: t4, t5, t3, ...

y1(t1) + (agr + agz + aszx + az1)y1(t1) + (ap1a12 + Ag2az1 + Ag1a02)Y1 (1) = Uy (t1) + (apz + arx)uy(ty)

V1(t2) + (agr + agzx + agz + az)y1(tz) + (ap1a12 + Ag2a21 + Ap1a02) Y1 (t2) = Uy (t2) + (apz + agz)uq(tz)

V1(tn) + (ap1 + agz + agz + az)y1(tn) + (Ag1a12 + Ag2a21 + Ag1a02) Y1 (tn) = Uy (ty) + (Ao + ar2)u,(t,)



Obtain coefficient map

Assume we can uniquely determine coefficients from perfect data
V1 + (ap1 + agz + asz +az1)y1 + (ap1a12 + ag2021 + Ag1a02)y1 = Uy + (Apz + ag2)uy
Evaluate at many time instances: t4, t5, t3, ...

y1(t1) + (agr + agz + aspx + az1)y1(t) + (Ap1a12 + Agaaz1 + Ag1a02)Y1(E1) = Uy (ty) + (agz + ax)uy ()

V1(t2) + (agr + agy + az + az)y1(tz) + (ap1a12 + Ag2a21 + Ag1a02) Y1 (E2) = Uy (t3) + (agz + arz)uq(tz)

V1(tn) + (ap1 + agz + agz + az)y1(tn) + (Ag1a12 + Ag2a21 + Ag1002) Y1 (En) = Uy (ty) + (Ao + ai2)u ()



Obtain coefficient map

Assume we can uniquely determine coefficients from perfect data

V1 + (ag1 + gz + a1z +az1)y, + (ag1a12 + agaaz1 + Ag1002)Y1 = Uy + (A2 + aq2)Ug



Obtain coefficient map

Assume we can uniquely determine coefficients from perfect data
V1 + (ag1 + agz + a1z + az1)y1 + (Ap1a12 + Ap2az1 + Ap1a02)Y1 = Ug + (Agz + A12)Uy

Extract coefficients to get coefficient map c: R* - R3

p — c(p)
(ag1, o2, A12,A21) — (Ag1 + Qg + 13 + Azq, Ag1015 + Ag2A21 + Ag1Qg2, Aoz + A1)



Obtain coefficient map

Assume we can uniquely determine coefficients from perfect data
V1 + (ag1 + agz + a1z + az1)y1 + (Ap1a12 + Ap2az1 + Ap1a02)Y1 = Ug + (Agz + A12)Uy

Extract coefficients to get coefficient map c¢: R* - R3

p — c(p)
(ag1, o2, A12,A21) — (Ag1 + Qg + 13 + Azq, Ag1015 + Ag2A21 + Ag1Qg2, Aoz + A1)

Model is (generically):

* Globally identifiable if ¢ is generically one-to-one
* Locally identifiable if ¢ is generically finite-to-one
 Unidentifiable if ¢ is generically infinite-to-one




Obtain coefficient map

Assume we can uniquely determine coefficients from perfect data
V1 + (ag1 + agz + a1z + az1)y1 + (Ap1a12 + Ap2az1 + Ap1a02)Y1 = Ug + (Agz + A12)Uy

Extract coefficients to get coefficient map c¢: R* - R3

p — c(p)
(ag1, o2, A12,A21) — (Ag1 + Qg + 13 + Azq, Ag1015 + Ag2A21 + Ag1Qg2, Aoz + A1)

Model is (generically):

* Globally identifiable if ¢ is generically one-to-one
* Locally identifiable if ¢ is generically finite-to-one
 Unidentifiable if ¢ is generically infinite-to-one

So our model is unidentifiable!



Testing injectivity

When is coefficient map injective?
* Solve c(p) = c(p”*) to determine global vs local vs un-id



Testing injectivity

When is coefficient map injective?

* Solve c(p) = c(p”*) to determine global vs local vs un-id
* Solve:

Qg1 T Agz T A1 T Ap1q
Ag1A12 T Ag2021 T Ag10p2
Qg T A1>

%k %k 3 3
Agp T Qg + A1y T Ay
Ap1QA12 0221 01402
%k %k
Aoy T+ A1p



Testing injectivity

When is coefficient map injective?

* Solve c(p) = c(p”*) to determine global vs local vs un-id
* Solve:

Qg1 T Agz T A1 T Ap1q
Ag1A12 T Ag2021 T Ag10p2
Qg T A1>

%k %k 3 3
Agp T Qg + A1y T Ay
Ap1QA12 0221 01402
%k %k
Aoy T+ A1p

e (et:
. k k k k
g1, Aoz, A1 in terms of free parameter a,; and ay¢, gy, A1, 51
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* Easier to distinguish local id vs un-id



Testing injectivity

When is coefficient map injective?
* Easier to distinguish local id vs un-id
 Check dimension of image of coefficient map:

dim(im(c)) = #fparameters = locally identifiable
dim(im(c)) < #fparameters = unidentifiable



Testing injectivity

When is coefficient map injective?
* Easier to distinguish local id vs un-id
 Check dimension of image of coefficient map:

dim(im(c)) = #fparameters = locally identifiable

dim(im(c)) < #fparameters = unidentifiable

* Find Jacobian of coefficient map and check rank at generic point:
c(ap1, Agz, A12,A21) = (Ag1 + Aoz + A1z + A1, Ap1G12 + Aga0s1 + Ag1Go2, Aoz + A13)

1 1 1 1
Je)={agp; +a; aps+az ap Ao
0 1 1 0



Testing injectivity

When is coefficient map injective?
* Easier to distinguish local id vs un-id
 Check dimension of image of coefficient map:
dim(im(c)) = #fparameters = locally identifiable

dim(im(c)) < #fparameters = unidentifiable

* Find Jacobian of coefficient map and check rank at generic point:
c(ap1, Agz, A12,A21) = (Ag1 + Aoz + A1z + A1, Ap1G12 + Aga0s1 + Ag1Go2, Aoz + A13)

1 1 1 1
J(c) = (aoz + a1 Qpp +0az1 Qo1 Qo2
0 1 1 0

rank(](c)) = 3 < 4, so model is unidentifiable



Testing injectivity

When is coefficient map injective?
* Easier to distinguish local id vs un-id
 Check dimension of image of coefficient map:
dim(im(c)) = #fparameters = locally identifiable

dim(im(c)) < #fparameters = unidentifiable

* Find Jacobian of coefficient map and check rank at generic point:
c(ap1, Agz, A12,A21) = (Ag1 + Aoz + A1z + A1, Ap1G12 + Aga0s1 + Ag1Go2, Aoz + A13)

1 1 1 1
Je)={agp; +a; aps+az ap Ao
0 1 1 0

rank(](c)) = 3 < 4, so model is unidentifiable
What to do with an unidentifiable model?



What to do with an unidentifiable model?

1. Adjust model, if experimentally feasible
 Add inputs or outputs

U1 /Oy 1 Uq /Dy 1 Y2
a a
—= >

— =
b b
a12 alZ
Aopq Ao o1 WAy

Unidentifiable |dentifiable



What to do with an unidentifiable model?

1. Adjust model, if experimentally feasible
e Remove a leak or edge

Unidentifiable |dentifiable



What to do with an unidentifiable model?

2. Find an identifiable reparametrization
 Reparametrize in terms of identifiable functions of parameters
(“identifiable combinations”)



What to do with an unidentifiable model?

2. Find an identifiable reparametrization
 Reparametrize in terms of identifiable functions of parameters
(“identifiable combinations”)
* Defn: Afunction f(p) is identifiable if it is algebraic over

R(c(p))

C1 = Agqp T Qg + A1 + A1
C; = Ag1Qq T+ AgpA21 T Ag1Qg2
C3 = Qg + Q43



What to do with an unidentifiable model?

2. Find an identifiable reparametrization
 Reparametrize in terms of identifiable functions of parameters
(“identifiable combinations”)
* Defn: A function f(p) is identifiable if it is algebraic over

R(c(p))

Agq T Ay1 = €1 — C3

= (¢ —c3)c3 — €
Aoy + A1 = C3



What to do with an unidentifiable model?

2. Find an identifiable reparametrization
 Reparametrize in terms of identifiable functions of parameters
(“identifiable combinations”)

x1 = —(ap1 + az1)xy + asx; +uy X1 =—(ap; +az)X; + Xy +uy

Xy = A1%1 — (Qoz + A12) X2 e X, = X1 — (ao2 + a12) X>
X1 =X

Y1 = X1 ! ! Y1 = Xq

Xy = A%



|dentifiable scaling reparametrization

Goal: try to reparametrize model over identifiable functions of
parameters by finding an appropriate scaling of the state variables:

Xi = fi(p)x;
EX:Xl = X1, XZ — U12X>



|dentifiable scaling reparametrization

Goal: try to reparametrize model over identifiable functions of
parameters by finding an appropriate scaling of the state variables:

Xi = fi(p)x;
EX:Xl = X1, XZ — U12X>

New model is identifiable if new coefficient map is finite-to-one:

X1 =—(ag1s +az)X1 + X, +uy
X, = X1 — (apy +a2) Xs
y1 = X1

(ap1 + azq, , Aoz + a12) ¥ (Ag1 + a1 + agy + aq2, (ag1 + azq)(ag; + agz) — , Qg2 + A13)



|dentifiable scaling reparametrization

Goal: try to reparametrize model over identifiable functions of
parameters by finding an appropriate scaling of the state variables:

Xi = fi(p)x;
EX:Xl = X1, XZ — U12X>

New model is identifiable if new coefficient map is finite-to-one:
X, =—q: X1 + X+
Xz = 1,X1 — 4343
y1 = X1

(91,92,93) — (q1 + 93, 9193 — 72, q3)



|dentifiable scaling reparametrization

Goal: try to reparametrize model over identifiable functions of
parameters by finding an appropriate scaling of the state variables:

Xi = fi(p)x;
EX:Xl = X1, XZ — U12X>

New model is identifiable if new coefficient map is finite-to-one:

X1 =—q: X1+ Xo +uy

Xz = 1.X1 — q3X;
Is this useful???
y1 = X4 Does this always

work???
(91,92,93) — (q1 + 93, 9193 — 72, q3)



Ex: Susceptible-Infected-Recovered (SIR) Model

S =uN — BSI/N — uS
[ =BSI/N —(u+y)l
R =yl —uR
y =kl
S(t) = number of susceptible individuals
I(t) = number of infected individuals

R(t) = number of recovered individuals

1 = birth/death rate

[ = transmission parameter

* Yy =recovery rate

* k =proportion of infected population which is measured/observed
N = total population size

y(t) denotes the subset of the infected population we are measuring

Capasso 1993
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Ex: Susceptible-Infected-Recovered (SIR) Model

S =uN — BSI/N — uS
[ =BSI/N —(u+y)l
R =yl —uR
y =kl
S(t) = number of susceptible individuals
I(t) = number of infected individuals
R(t) = number of recovered individuals
1 = birth/death rate
[ = transmission parameter
* Yy =recovery rate
* k =proportion of infected population which is measured/observed
N = total population size

y(t) denotes the subset of the infected population we are measuring

Capasso 1993



|dentifiability analysis

* SIR Model Egns

BSI
S=uN———uS

N

. BSI
== - (w+ I
R =yl — uR
y = ki
* Input-output equation:
(Bu+ By) .
(=Bu+ u? + uy)y? + V> +uyy +—y*y—y*+yy=0

kN kN



SIR Model

* |dentifiability test:
—Bu+ P+ py = —prut + ut + puy?
Bu+By _Bw +BY

kN k*N*
w=u
B _F
e Solution: RN N
p=p" y=y" u=u* kN =k*N*

Capasso 1993



SIR Model

* |denfiable combinations 3, y, u, kN
. s . 1 R
* Reparametrizes =—, 1 =—, r =—
N N N

* New model eqgns:

S=U—[SL—Uus
i =/si—(u+y)i

r =7yl — ur
y = kNi
0+
kN _ 2
CAA )'—>< SRl Ay

When can we do this?

)M;W)

Capasso 1993



|dentifiable scaling reparametrization

. . Uq
Looked at special class of linear models:

e Strongly connected
* Single input/output in same compartment
* Leaks from every compartment

* Canre-write diagonal elements as a;;

.7.6'1 = aA11X1 ~+ A12X> + Uuq

Ex:

Xy = Ap1X1 T Ap2Xy

Y1 = X1



|dentifiable scaling reparametrization

Looked at special class of linear models:

e Strongly connected Q21
* Single input/output in same compartment @T@
* Leaks from every compartment

* Canre-write diagonal elements as a;;

J—

EX 5(1 = aA11X1 ~+ A12X> + Uuq
=2 - x=AG)x+u
Xy = Qp1X1 + QX : i
2T 21 T 22t ~ Graph G with m edges and n vertices
Vi = xq Cycles a1, a9, 12051




|dentifiable scaling reparametrization

Looked at special class of linear models:

e Strongly connected 21
* Single input/output in same compartment @ i, @
* Leaks from every compartment

* Canre-write diagonal elements as a;;

J—

Ex: X1 = a11X1 + a0 + Uy
— - x=AG)x+u
X9 = Ap1X1 + ApyX : :
27 Telnl T aane | Graph G with m edges and n vertices
Y1 =X Cycles a1, a3z, A12021
Identifiable functions —(agy; + a,1) = a4, , —(agy + a15) = a,,

are cycles in graph!



|dentifiable scaling reparametrization

Looked at special class of linear models: “ /Oy1
e Strongly connected 21
* Single input/output in same compartment
* Leaks from every compartment

* Canre-write diagonal elements as a;;

Theorem (M-Sullivant 2014): Model with above assumptions has
an identifiable scaling reparametrization

= dim(im(c)) =m+1

< cycles in graph are identifiable




Examples

Model 1 Model 2

- o

X1 a;; a0 X1 Uq X1 a;; ai;p; O X1 Uq
X |=1 0 ap; az||[X2 ]+ 0 Xp | =11 ap azs|{X2]+| O
X3 az1 dzz dzz/ \X3 0 X3 az1 0 azz/ \X3 0
yl — xl yl — x1
dim(im(c)) = 4 dim(im(c)) =5

No identifiable scaling reparametrization! Has an identifiable scaling reparametrization



What about other models?

* Linear compartmental models with more inputs and outputs?
Nonlinear models?

* How do we find identifiable functions of parameters?

* Do they have an identifiable scaling reparametrizations?



How to find identifiable functions in general?

* Ad hoc methods:
* Find Grobner bases of {c(p) — c(p™)} for different orderings of p

M-DiStefano-Eisenberg 2009, M-Rosen-Sullivant 2018, Bates-Hauenstein-M 2019
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How to find identifiable functions in general?

* Ad hoc methods:
* Find Grobner bases of {c(p) — c(p™)} for different orderings of p

 Gaussian elimination of Jacobian of c(p) over R(c(p))

* Homotopy continuation to track solution path g (t) satisfying
c(q(t)) = ¢(p) and reconstruct functions from samples

M-DiStefano-Eisenberg 2009, M-Rosen-Sullivant 2018, Bates-Hauenstein-M 2019



How to find identifiable functions in general?

* Ad hoc methods:
* Find Grobner bases of {c(p) — c(p™)} for different orderings of p

 Gaussian elimination of Jacobian of c(p) over R(c(p))

* Homotopy continuation to track solution path g (t) satisfying
c(q(t)) = ¢(p) and reconstruct functions from samples

 Can we somehow use algebraic matroids?

M-DiStefano-Eisenberg 2009, M-Rosen-Sullivant 2018, Bates-Hauenstein-M 2019



How to involve matroids

e Theorem 6.7.1 [Oxley]: Suppose K is an extension field of a field [F
and E is a finite subset of K. Then the collection I of subsets of E
that are algebraically independent over F is the set of independent

sets of a matroid on E. The resulting matroid is called an algebraic
matroid.

 Ex:2-compartment model

E ={aj1,a32,a12,a2:}and F = R(Q (p), c2(p), c3 (p)) where
c1(p) = —ay; — ay;
C,(p) = a0, — aq12a7
c3(p) = —ay;
Then | = {Q)» a2}, {a21}} and C = {{an}; tazz2hiasz, a21}}



How to involve matroids

+ Mapping p = (¢, (p), c2(p), c3(p))

* Variety I/ of interest is the pre-image of a point ¢ = (¢, €5, €3) under
the map ¢, which has a trivial vanishing ideal.

* Point ¢ can be taken to be a generic point of R3 by setting {¢}, &, (3}
to be algebraically independent over RR.

* So the only algebraic constraints on the p-variables come from the
equations {c(p) = ¢}.



How to involve matroids

* Ideal P = (c;(p) — ¢1,c,(p) — &3, c3(p) — ¢3) which contains the

polynomials in R(¢)[p] = R(¢3, &3, E3)[aq1, azz, aq2, az4q].

* |deal P is prime, therefore computation of the algebraic matroid
modulo P is well-defined.



How to involve matroids

Prop 2.14 [Kirdly-Rosen-Theran 2013]: Let P = (f4, ..., [;,) be a prime
ideal contained in IF|xq, ..., x,,]. Define the Jacobian matrix J(P) as:

0fi . .
—:1<i<ml<j<n

This matrix, when considered as a matroid with columns as the

ground set and linear independence over Frac(F[x]/ P) defining
independent set [ represents the dual matroid to M(P). The transpose
of the matrix spanning the kernel gives the matroid M (P).



How to involve matroids

* Ex:Letcbethemapp (cl(p), c,(p), c3 (p)) from linear 2-
compartment model. Jacobian J(c) is given by:

-1 -1 0 0
(azz i1 —0azq —a12>
0 —1 0 0

A basis for the kernel of this matrix is given by (0,0, a{,, —a,¢)".

Here, linear independence is taken over Frac([F|x]/ P) =
R(¢)(a12,az1).



How to involve matroids
Thus, a vector matroid is given by:
(0 0 Q12 —Qaz1)

Where the ground set E = {1, 2, 3,4} and a set of circuits is given by

¢ ={{13},{2},{3,4}}.
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Thus, a vector matroid is given by:
(0 0 Q12 —Qaz1)

Where the ground set E = {1, 2, 3,4} and a set of circuits is given by

C = {{1},{2},{3,4}}.
= a4, and a,, are each algebraic over R(¢)
= a4 and a,, are each locally identifiable



How to involve matroids

Thus, a vector matroid is given by:
(0 0 Q12 —Qaz1)

Where the ground set E = {1, 2, 3,4} and a set of circuits is given by
C = {{1},{2},{3,4}}.

= a4, and a,, are each algebraic over R(¢)

= a4 and a,, are each locally identifiable

= {aq,, a,1} is algebraically dependent over R(¢).
Dependency relationship? Find a Grébner basis to get a,,a,1 =
(61— GG — 6



How to involve matroids

Thus, a vector matroid is given by:
(0 0 Q12 —Qaz1)

Where the ground set E = {1, 2, 3,4} and a set of circuits is given by
C = {{1},{2},{3,4}}.

= a4, and a,, are each algebraic over R(¢)

= a4 and a,, are each locally identifiable

= {aq,, a,1} is algebraically dependent over R(¢).
Does not tell us if polynomial can be decoupled in a;,,a,; and ¢!
— (61 — C3)6 — & VS. — (61 — C3)¢&3 — €2



Observability

* The state variable x; is observable if it can be recovered from
observation of the input and output alone
* i.e. how well internal states of a system can be inferred from
knowledge of external inputs/outputs



Observability

* The state variable x; is observable if it can be recovered from
observation of the input and output alone
* i.e. how well internal states of a system can be inferred from
knowledge of external inputs/outputs
. X1 = —(ap1 + az1)x; + a;ax; +uy
e Ex:
Xy = z1%1 — (@2 + A12) X2

Y1 = X1

* Clearly x; is observable. Is x,?
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Observability

* The state variable x; is observable if it can be recovered from
observation of the input and output alone
* i.e. how well internal states of a system can be inferred from
knowledge of external inputs/outputs

. x1 = —(ap1 + az1)x1 + agpx; + Uy
¢ X.

Xy = Ap1X1 — (Qgz + aq2) X3

Y1 = X1

* Clearly x; is observable. Is x,?
* Can we write x, as a function of inputs and outputs only?

x; = (71 + (apy + az1)y1 —uy)/as;



Observability

* For linear compartmental models, can translate this to a graphical

condition:
e Thm [Godfrey&Chapman 1990]: A model is observable & it is

output connectable for every output.

uq /Oyl

* For nonlinear models, do not have easy to check criteria based on

model structure



Observability

* Given the input and output trajectories and generic parameter value
p, the state variable x; is:

* generically observable if there is a unique trajectory for x; compatible with
the given input-output trajectory.
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compatible with input/output data
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Observability

* Given the input and output trajectories and generic parameter value
p, the state variable x; is:

* generically observable if there is a unique trajectory for x; compatible with
the given input-output trajectory.

* generically locally observable if there is an open neighborhood U, of the
trajectory x;(t) such that there is no other trajectory x;(t) S Uy, thatis
compatible with input/output data

* generically unobservable if there are infinitely many trajectories for x;
compatible with given input-output trajectory.

* rationally observable if there is a rational function F such that the trajectory
x;(t) satisfies x;(t) = F(y,y’, ...,u,u’, ..., p).



Observability

Prop 6.3 [M-Rosen-Sullivant 2018]: Consider state space model with 1
output y. Consider ideal P =

n—2

dtn—Z
n-—1

y = 9Cp), e, YO == g (x,p)

f

x'— f(x,u,p), w,xm) f(x,u,p),

Original system



Observability

Prop 6.3 [M-Rosen-Sullivant 2018]: Consider state space model with 1
output y. Consider ideal P =

n—2

dtn—Z
n-—1
y_g(x’p)’ Y y(n_l)_dtn_l g(x’p)

\ )
|

Derivatives of system, where n = # state variables

x'— flx,u,p), .., x"Y —

f(x,u,p),




Observability

Prop 6.3 [M-Rosen-Sullivant 2018]: Consider state space model with 1
output y. Consider ideal P =

n—2

dtn—Z
n-—1

Y — g(x; p); e ) y(n_l) o din-1 g(xr p)

x' — flx,u,p), e, x™ D —

f(x,u,p),

Consider an elimination ordering < with three blocks of variables:
o, x', o, x " ONLx ) > {3 >y, w0, o y (72 u(0m2) (1))

Then a Grobner basis for P with respect to < will contain a polynomial
inx;,y,y',..,uu,..if it exists. Otherwise, no such polynomial exists.



Observability of 2-comp model

* P=(aj1x1 +appx; Hup — X, AxiXxq + dgpX; — Xy,
! !
X1 — Y1, X1~ Y1)
contains polynomials in the ring R(p)[x4, X5, X1, X2, U1, V1, V1 |

* Find Grobner basis with elimination order <, we have:

4
A11Y1 T Q12X T UL — YV
X1 — V1

are two polynomials of the desired form.



Observability of 2-comp model

* P=(aj1x1 +appx; Hup — X, AxiXxq + dgpX; — Xy,
! !
X1 — Y1, X1~ Y1)
contains polynomials in the ring R(p)[x4, X5, X1, X2, U1, V1, V1 |

* Find Grobner basis with elimination order <, we have:

4
A11Y1 T Q12X T UL — YV
X1 — V1

are two polynomials of the desired form.

* So the model is rationally observable. Is this overkill?



Observab’ty of 2-comp model using matroids

_ ’ /
* P=(aj1x; +apx; +ug —xq, Ap1Xq + azxXx; — Xy,

X1 — Y1, X1 — Y1)
contains polynomials in the ring R(p)[x4, X5, X1, X2, U1, V1, V1 |

* Instead of applying a Grobner basis to find desired polynomials, we
can examine the algebraic matroid associated to the system. The
ground set E = {xq, x5, X1, X5, U1, V1, V1 }-
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! !/
* P=(aj1x1 +appx; Hup — X, AxiXxq + dgpX; — Xy,
! !
X1 — Y1, X1~ Y1)
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ground set E = {xq, x5, X1, X5, U1, V1, V1 }-

* Look for circuits including x4, x, while excluding x; and x,.



Observab’ty of 2-comp model using matroids

14 !/
* P=(aj1x; +apx; +ug —xq, Ap1Xq + azxXx; — Xy,

X1 — Y1, X1 — Y1)
contains polynomials in the ring R(p)[x4, X5, X1, X2, U1, V1, V1 |

* Instead of applying a Grobner basis to find desired polynomials, we
can examine the algebraic matroid associated to the system. The
ground set E = {xq, x5, X1, X5, U1, V1, V1 }-

* Look for circuits including x4, x, while excluding x; and x,.

* Find circuits: {x1, y1}, {x5, Uy, v1, y1}, and {xq, x5, U4, y1} =
X1, X locally observable



Observability of SIR model using matroids

— ! @ _ r / .BSI’ .BS,I / _ @ n r BS’I _ BSI’ /
P—<S +uS+———uN,S" +uS" + ——+=-,1 + (u+y)I 1 + (u+y)I > — R+

‘LlR _ VI,RH _I_ MR, _ }/II,y _ k[,y, _ k[l,y” _ kIII>
contains polynomials in the ring R(p)[S,,R,S',I',R",S",I",R",y,vy',y"]

 GroundsetE ={S,S",S",LI''/I",R,R",R",y,y",y"}.



Observability of SIR model using matroids

. p=<5'+u5+%—u1v,5"+u5’+”’§’ B I =B ey BB Ry

N’ N N
UR —yLLR" + uR' —yl',y — kl,y' — kI',y" — kI">

contains polynomials in the ring R(p)[S,,R,S',I',R",S",I",R",y,vy',y"]
 GroundsetE ={S,S",S",LI''/I",R,R",R",y,y",y"}.
e Circuits including S, I, R while excluding their derivatives:

Sy, y Sy, y LSy, y" b Ly Ly, y"} = S, T locally
observable



Observability of SIR model using matroids

° — ! @ _ r / .BSI’ .BS,I / _ @ n r BS’I _ BSI’ /
P—<S +uS+———uN,S" +uS" + ——+=-,1 + (u+y)I 1 + (u+y)I > — R+

‘LlR _ VI,RH _I_ MR, _ }/II,y _ k[,y, _ k[l,y” _ kIII>
contains polynomials in the ring R(p)[S,,R,S',I',R",S",I",R",y,vy',y"]

 GroundsetE ={S,S",S",LI''/I",R,R",R",y,y",y"}.
e Circuits including S, I, R while excluding their derivatives:

Sy, y Sy, y LSy, y" b Ly Ly, y"} = S, T locally
observable

* Any relation including one of {R, R, R""} must include at least two =
R unobservable



Open guestions

1. Determining minimal sets of inputs/outputs to obtain identifiability
 (Can we use matroids???

///;)yl Vo
a

21

ﬁ
< —
a2 a2
Ao1 Qo2 Ap1 Ap2

Unidentifiable |dentifiable



Open guestions

2. ldentifiable functions of parameters in general
 (Can we use matroids???

Recall dependency relationships:

—(G-&G)G—6G s — (61 = G3)C3 — 1216

“Decoupled” VS. “Coupled”



Open guestions

3. ldentifiable scaling reparametrizations in general
 (Can we use matroids???

x1 = —(ag1 + az1)xy + apx, +uy X1 =—(ap; +az)X; + Xy +uy
Xy = Ap1%1 — (Ag2 + aq2) X3 X, = X1— (agy +aq2) X,

Y1 = Xq y1 = X1



Thank you!



