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Connected graph (V,E) with n nodes and m edges.
Embedded in Rd by the map p : [n]→ Rd

We say p = (pik) ∈ Rnd.
A deformation of p is a continuous map p(t) : [0, 1]→ Rnd.
A rigid motion is a deformation preserving{

d∑
k=1

(pik(t)− pjk(t))2
}
ij∈([n]

2 )

Euclidean group of rigid motions has dimension
(d+1

2
)
.
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Consider p : [n]→ Rd, and E ⊂
([n]

2
)
, |E| = m.

[6] = {1, 2, 3, 4, 5, 6}
E = {12, 13, 14, 15, 23, 25, 26, 34, 36, 45, 46, 56}

p =



p11 p12 p13
p21 p22 p23
p31 p32 p33
p41 p42 p43
p51 p52 p53
p61 p62 p63


=



1 0 0
−1

2

√
3

2 0
−1

2 −
√

3
2 0

−
√

3
2 −1

2 3√
3

2 −1
2 3

0 1 3


.

We say p ∈ Rnd.

Frohmader, Heaton Epsilon local rigidity



p ∈ Rnd

E ⊂
([n]

2
)

|E| = m

=⇒
g : Cnd → Cm
g(x) = 0
V (g), VR(g)

V (g) :=
{
x ∈ Cnd : g(x) = 0

}
VR(g) := V (g) ∩ Rnd.
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p ∈ Rnd

E ⊂
([n]

2
)

|E| = m

=⇒
g : Cnd → Cm
g(x) = 0
V (g), VR(g)

g(x) =



(x11 − x21)2 + (x12 − x22)2 + (x13 − x23)2 − 3
(x11 − x31)2 + (x12 − x32)2 + (x13 − x33)2 − 3

(x11 − x41)2 + (x12 − x42)2 + (x13 − x43)2 − 1
4

(√
3 + 2

)2
− 37

4

(x11 − x51)2 + (x12 − x52)2 + (x13 − x53)2 − 1
4

(√
3− 2

)2
− 37

4
(x21 − x31)2 + (x22 − x32)2 + (x23 − x33)2 − 3

(x21 − x51)2 + (x22 − x52)2 + (x23 − x53)2 − 1
2

(√
3 + 1

)2
− 9

(x21 − x61)2 + (x22 − x62)2 + (x23 − x63)2 − 1
4

(√
3− 2

)2
− 37

4

(x31 − x41)2 + (x32 − x42)2 + (x33 − x43)2 − 1
2

(√
3− 1

)2
− 9

(x31 − x61)2 + (x32 − x62)2 + (x33 − x63)2 − 1
4

(√
3 + 2

)2
− 37

4
(x41 − x51)2 + (x42 − x52)2 + (x43 − x53)2 − 3
(x41 − x61)2 + (x42 − x62)2 + (x43 − x63)2 − 3
(x51 − x61)2 + (x52 − x62)2 + (x53 − x63)2 − 3


=



0
0
0
0
0
0
0
0
0
0
0
0


.
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Definition

A flex of p is a deformation p(t) : [0, 1]→ Rnd such that
g(p(t)) = 0 for all t ∈ [0, 1] and which is not a rigid motion.

Definition

The configuration p is called locally rigid if no flex exists.

In the 2009 paper by Timothy Abbott, Reid Barton, and Eric
Demaine, “Generalizations of Kempe’s Universality Theorem”
[ABD09] deciding local rigidity was shown to be Co-NP hard.

Frohmader, Heaton Epsilon local rigidity



p ∈ Rnd

E ⊂
([n]

2
)

|E| = m

=⇒
g : Cnd → Cm
g(x) = 0
V (g), VR(g)

The Jacobian dg : Cnd → Cm is a linear map, a matrix.
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Jacobian dg : Cnd → Cm is a linear map, a matrix.
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f(x) =

 f1 = −x3 + xy
f2 = −x4 + xz

f3 = x7 − x5y − x4z + x2yz

 : C3 → C3
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df =
[ −3x2 + y x 0

−4x3 + z 0 x
7x6 − 5x4y − 4x3z + 2xyz −x5 + x2z −x4 + x2y

]
df |(0,0,0) df |(0,5,3) df |(1,1,1)

[ 0 0 0
0 0 0
0 0 0

] [ 5 0 0
3 0 0
0 0 0

] [ −2 1 0
−3 0 1

0 0 0

]
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Jacobian dg : Cnd → Cm has a generic rank. Choosing
q = (qik) ∈ Cnd randomly, dg|q becomes a matrix with scalar
entries. Calculate its rank (Gaussian elimination if exact
computation, or SVD for floating point calculations).
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By the way, 3/4 of triangles are obtuse. From Edelman and Strang:
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Theorem
A configuration p with n nodes embedded in Rd is infinitesimally
rigid if

rank(dg|p) = nd−
(
d+ 1

2

)
,

corank(dg|p) =
(
d+ 1

2

)
.

Theorem
Infinitesimal rigidity implies local rigidity.

Why does this work?

Frohmader, Heaton Epsilon local rigidity



Theorem
Infinitesimal rigidity implies local rigidity.

Proof.
Since the Euclidean group acts we have a lower bound(

d+ 1
2

)
≤ dimpVR(g).

But

dimpVR(g) ≤ dimpV (g) ≤ corank(dg|p) =
(
d+ 1

2

)
.
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p =


1 0 0
− 1

2

√
3

2 0
− 1

2 −
√

3
2 0

−
√

3
2 − 1

2 3√
3

2 − 1
2 3

0 1 3


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Flexible?

Frohmader, Heaton Epsilon local rigidity



Flexible?
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Flexible?
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...and now for something completely different.
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We know the roots of q(x) = x3 − 1.

x3 − 7x2 + 17x− 15
(x− 3)(x− 2− i)(x− 2 + i)

x3 − 5x2 − 7x+ 51
(x+ 3)(x− 4 + i)(x− 4− i)
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h(z, t) = (1− t)


f1(x)
f2(x)

...
fN (x)

+ γt


xd1

1 − 1
xd2

2 − 1
...

xdN

N − 1

 ,

h(x, t) = (1− t)f + γtq

h(x(t), t) = 0
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h(x, t) = (1− t)f + γtq

h(x(t), t) = 0
∂h

∂x

dx

dt
+ ∂h

∂t
= 0.
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Say that f : C7 → C4. Its irreducible components X can have
possible dimensions dim X ∈ {3, 4, 5, 6}. To find 4-dimensional
components, create a square system of equations C7 → C7:

[
Af
Lx

]
=



1 0 0 c11
0 1 0 c21
0 0 1 c31



f1
f2
f3
f4



L11 L12 · · · L17
L21 L22 · · · L27
L31 L32 · · · L37
L41 L42 · · · L47





x1
x2
x3
x4
x5
x6
x7




=



0
0
0
0
0
0
0


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The numerical irreducible decomposition uses witness sets and the
following

Theorem (Bertini’s Theorem, Theorem 9.3 of [BSHW13])

Given a polynomial system f : CN → Cn, there is a Zariski-open,
dense set U ⊂ Ck×n of matrices A such that V (Af) \ V (f) is
either empty or consists of exactly Cf ∈ Z>0 irreducible
components, each smooth (and hence disjoint) and of dimension
N − k. The number Cf of these extraneous components is
independent of A.
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But now back to epsilon local rigidity...
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Using a moving frame [Olv], we can change coordinates in a useful
way, creating zeros.

1 0 0
− 1

2

√
3

2 0
− 1

2 −
√

3
2 0

−
√

3
2 − 1

2 3√
3

2 − 1
2 3

0 1 3

 7→


0.0 0.0 0.0
1.7320508075688772 0.0 0.0
0.8660254037844388 −1.5 0.0
1.3660254037844386 −1.3660254037844386 3.0
−0.1339745962155613 −0.5 3.0
1.3660254037844388 0.3660254037844386 3.0

 .
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Real parameter homotopy
Start with equations g(x) = 0 but then adjoin one additional
equation:

`v := vTx− vT p = 0.

Here, we can choose v ∈ RN randomly, or we could choose v from
some infinitesimal flex. Then perturb this equation to

`v,ε := vTx− vT p− ε = 0.

for some small real 0 < ε ∈ R. In the computer, we use a real
parameter homotopy (without γ) as in

h(x, t) = (1− t)
[

g
`v,ε

]
+ t

[
g
`v

]
.
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Flexible?
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Flexible?
Here is one of the first deformations where the 3-prism begins to twist
downwards, as you can see in the z-coordinates of nodes 4, 5, 6.

0.0 0.0 0.0
1.7345015098619578 0.0 0.0
0.868440136662386 −1.4992275136004456 0.0
1.434394418877309 −1.322820159782012 2.9867578031247515
−0.12780675639331027 −0.5722571170386941 2.9884237516052568

1.3032879403929745 0.40433597324593706 2.9865056925919635


The 3-prism can also untwist upwards, as you can see the configuration
below:

0.0 0.0 0.0
1.7366579715554198 0.0 0.0
0.8689191994267838 −1.5000751141689224 0.0
1.2441020030189796 −1.4251233353656827 3.022965523609326
−0.12034129224092607 −0.35340935623990566 3.024004212778408

1.4887072950829638 0.2911265336721315 3.021803451042337


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Epsilon local rigidity

Definition

Let p0 be an initial configuration and p̂0 be the configuration in
the moving frame. We say that p0 is ε-locally rigid if every flex
p̂(t) of p̂0 satisfies p̂(t) ∈ Bε(p̂0) for all t ∈ [0, 1], where Bε(p̂0) is
the open ε-ball centered at p̂0.
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The nonlinear system of equations

We note this draws on results from [ARSED02, RRSED00] and also from the
1954 paper of Seidenberg [Sei54].

Theorem (Theorem 5 of [Hau12])

Suppose that the conditions in the Assumption hold. Let z ∈ RN−k, γ ∈ C,
y ∈ RN − VR(f), α ∈ CN−k+1, and H : CN × CN−k+1 × C→ C2N−k+1 be
the homotopy defined by

H(x, λ, t) =

 f(x)− tγz
λ0(x− y) + λ1∇f1(x)T + · · ·+ λN−k∇fN−k(x)T

αTλ− 1


where f(x) = [f1(x), . . . , fN−k(x)]T . Then

E1 ∩ V ∩ RN

contains a point on each connected component of VR(f) contained in V .

Frohmader, Heaton Epsilon local rigidity



The nonlinear system of equations
We collect here the following list of assumptions which refer to the homotopy
H(x, λ, t) defined above.

1 Let N > k > 0 and f : RN → RN−k be a polynomial system with real
coefficients, with V ⊂ V (f) a pure k-dimensional algebraic set with
witness set {f, L,W}.

2 Assume that the starting solutions to H(x, λ, 1) = 0 are finite and
nonsingular.

3 Assume also that the number of starting solutions is equal to the
maximum number of isolated solutions to H(x, λ, 1) = 0 as z, γ, y, α vary
over CN−k × C× CN × CN−k+1. This will be true for a nonempty
Zariski open set of CN−k × C× CN × CN−k+1.

4 Assume all the solution paths defined by H starting at t = 1 are
trackable. This means that for each starting solution (x∗, λ∗) there exists
a smooth map ξ : (0, 1]→ CN ×CN−k+1 with ξ(1) = (x∗, λ∗) and for all
t ∈ (0, 1] we have ξ(t) is a nonsingular solution of H(x, λ, t).

5 Assume that each solution path converges, collecting the endpoints of all
solution paths in the sets E and E1 = π(E) where π(x, λ) = x projects
onto the x coordinates, forgetting the λ coordinates.
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The 3-prism is epsilon locally rigid.
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The slingshot is epsilon locally rigid.
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Thanks to Daniel Bernstein for organizing!
Also, thanks to Myfanwy Evans, Frank Lutz, Bernd Sturmfels for
the Math+ postdoc as part of the Thematic Einstein Semester on
Geometric and Topological Structure of Materials. Thanks also to
Robert Connelly, Eliana Duarte, Louis Theran, and Miranda
Holmes-Cerfon for discussions on rigidity theory (as I am learning!)
And thanks to Paul Breiding, Sascha Timme, and Tim Duff for
helping me to understand numerical algebraic geometry.
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Prestress rigidity tells us the 3-prism is rigid.

A := incidence matrix of the graph
wT (dg|p) = 0

Kc = (dg|p)Tdiag(c)(dg|p)
Hw,c(x) = xT (Ωw +Kc)x

Ωw = ATdiag(w)A⊗ Id
F T (a1 · Ωw1 + a2 · Ωw2)F � 0

vT1 (a1 · Ωw1) v1 > 0
vTΩwv = 89.56922 > 0
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