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Semidefinite programming (SDP)

• The semidefinite program in standard form is

inf
X∈Sn

{〈C ,X 〉 | A(X ) = b, X ∈ Sn+}

• The feasible region F := {X | A(X ) = b, X ∈ Sn+} is a spectrahedron

• The SDPs are expensive to solve

• Modelling is crucial to numerical stability

• Symmetry reduction reduces the size of SDP formulations

• Facial reduction ensures an SDP instance can be solved correctly

1



Symmetry reduction (2 minutes crash course)

• Recall that the feasible region is

F = {X | A(X ) = b, X ∈ Sn+}

• In symmetry reduction, we try to find an orthogonal matrix Q such that, for any

feasible X ∈ F , the orthogonal transformation QTXQ is a block-diagonal matrix, i.e.,

QTXQ =


X1 0 · · · 0

0 X2

. . .
...

...
. . .

. . . 0

0 · · · 0 Xt

 ∈ S
n
+,

where Xi ∈ S
ni
+ is the i-th block and

∑t
i=1 ni = n

• As X ∈ Sn+ if and only if Xi ∈ S
ni
+ for i = 1, . . . , t, the feasible region can be

equivalently reformulated as

F = {X | A(X ) = b, Xi ∈ S
ni
+ for i = 1, . . . , t}

• For example, if ni = 1 and thus t = n, the SDP collapses to a linear program 2



An example of symmetry reduction

• An SDP relaxation for the cut minimization problem (Pong et al. ’14)

minX 〈C ,X 〉
s.t. A(X ) = b,X ≥ 0

X ∈ Snk+ ,

where n is the number of vertices and k is the number of subsets in the partition

• The problem instance can161 has n = 161 vertices and k = 3 partitions

• The size of X ∈ Snk+ is nk = 483 for can161, and very difficult to solve /
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An example of symmetry reduction

• The feasible solutions X under certain unitary transformation, i.e., QTXQ, has the

following block-diagonal structure
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nz = 27189
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• The sizes of these 9 blocks are 60, 60, 60, 60, 60, 60, 60, 33, 30
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An example of symmetry reduction

• The symmetry reduced SDP relaxation for cut minimization problems

minX 〈C ,X 〉
s.t. A(X ) = b,X ≥ 0

X ∈ S483
+///////////

X1 ∈ S60
+

...

X9 ∈ S30
+

• Before and after symmetry reduction,

the sizes of p.s.d. constraints

Original SDP 483

Symmetry reduced 60, 60, 60, 60, 60, 60, 60, 33, 30

Instance can161

• The symmetry reduced SDP can be solved in a laptop in few minutes ,
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How do we find the orthogonal matrix Q?

• Many problems have a natural “combinatorial symmetry”

• For example, the input graph is “invariant” under certain permutations of its vertices

1 2

34

2 3

41

2 1

43

Input graph rotate clock-wise flip horizontally

• The symmetries in the problem translates into symmetries in the data matrices of its

SDP relaxation

• A set M⊆ Cn×n is a matrix ∗-algebra over C if it is closed under addition, scalar

and matrix multiplication, and taking conjugate transpose

• The data matrices C ,A1, . . . ,Am are contained in a matrix ∗-algebra
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How do we find the orthogonal matrix Q?

• Theorem (de Klerk 2009) Assume the data matrices C ,A1, . . . ,Am and the identity

matrix are contained in a matrix ∗-algebra M. Then it has an optimal solution in M,

if the SDP has an optimal solution.

• Theorem (Wedderburn 1907) There exists a unitary matrix Q such that the matrix

∗-algebras M containing the identity matrix can be decomposed as

Q∗MQ =


M1 0 · · · 0

0 M2

...
...

. . . 0

0 · · · 0 Mt

 , where each Mi ⊆ Cni×ni is basic

• Symmetry in the problem ⇒ Data matrices in the algebra ⇒ Optimal solution in the

algebra ⇒ Decomposition using Wedderburn

• There are more general approaches to find the decomposition, see Permenter and

Parrilo 2016
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Facial reduction

• Slater’s condition (strict feasibility) holds for semidefinite program in standard form

if there exists X such that

A(X ) = b, X ∈ Sn++

• Without strict feasibility:

- the KKT conditions may not be necessary for the optimality

- strong duality may not hold

- small perturbations may render the problem infeasible

- many solvers might run into numerical errors

• Facial reduction is a regularization technique that can be used for semidefinite

programs that fail strict feasibility (Borwein, Wolkowicz, ’81)

• The loss of strict feasibility is common in SDP relaxations for hard nonconvex

problems
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Facial reduction

• Given the SDP in standard form

inf
X
{〈C ,X 〉 | A(X ) = b,X ∈ Sn+} (1)

Then exactly one of the following alternatives holds

1. The SDP (1) is strictly feasible:

A(X ) = b, X ∈ Sn++

2. The auxiliary system is consistent:

0 6= A∗(y) ∈ Sn+ and 〈b, y〉 = 0

• We call A∗(y) an exposing vector

• The feasible region of (1) is contained in A∗(y)⊥ ∩ Sn+, thus we can reduce the

problem size

• Facial reduction algorithm finds an exposing vector A∗(y), and repeat until a strictly

feasible problem is obtained
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Facial reduction for the cut minimization problem

• The SDP relaxation for the cut minimization problem (Pong et al. ’14)

minX 〈C ,X 〉
s.t. A(X ) = b,X ≥ 0

X ∈ Snk+

• After facial reduction, we obtain

minX 〈C ,X 〉
s.t. A(X ) = b,X ≥ 0

X ∈ Snk+////////// =⇒ X = VRVT ,R ∈ S(n−1)(k−1)
+

where the columns of V span A∗(y)⊥

the sizes of p.s.d. constraints

Original SDP 483

Facially reduced 321

Symmetry reduced 60, 60, 60, 60, 60, 60, 60, 33, 30

Instance can161
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Facial reduction for symmetry reduced SDP

• The main issue:

1. In theory, there is no problem to apply both facial reduction and symmetry

reduction

2. In practice, it is difficult as one loses the structure after facial or symmetry

reduction

• The existing situation:

1. With only facial reduction, we are only able to solve small instances

2. With only symmetry reduction, the solution we found may be very inaccurate

• Our contribution:

A method to find the facially and symmetry reduced program
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Facial reduction for symmetry reduced SDP

Theorem (H., Sotirov, Wolkowicz) Let W be an exposing vector of the minimal

face of a given SDP instance. Then

1. There exists an exposing vector WG ∈M of the minimal face of the

input SDP instance

2. QTWGQ is an exposing vector of the minimal face of the symmetry

reduced SDP

• In plain words, we know how to do facial reduction for the symmetry reduced SDP
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Facial reduction for the symmetry reduced program

• The SDP relaxation for the cut minimization problem (Pong et al. ’14)

min
X
〈C ,X 〉 subject to A(X ) = b, X ≥ 0, X ∈ Snk+

• The symmetry reduced program is

min
X
〈C ,X 〉 subject to A(X ) = b, X ≥ 0, Xi ∈ S

ni
+ for i = 1, . . . , t

for some ni � n and
∑t

i=1 ni = n

• The facially and symmetry reduced program is

min
X
〈C ,X 〉 subject to A(X ) = b, X ≥ 0, Xi = ViRiV

T
i , Ri ∈ S

ri
+ for i = 1, . . . , t

for some ri ≤ ni � n and
∑t

i=1 ri <
∑t

i=1 ni = n
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Facial reduction for symmetry reduced SDP

• For the can161 instance in the cut minimization problem, we obtain

the sizes of p.s.d. constraints

Original SDP 483

Facially reduced 321

Symmetry reduced 60, 60, 60, 60, 60, 60, 60, 33, 30

Facially + Symmetry 40, 40, 40, 40, 38, 40, 40, 21, 20

Instance can161

• Now lets check if our theory works?
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Numerical results on the cut minimization problem

• We solve the SDP relaxation from Pong et al. ’14 using interior point method

•

Instance Symmetry Facial+Symmetry

can144

bound 0.3838 0.6233

iteration 35 18

time 32.27s 5.8s

solver output fail success

can161

bound 0.4828 0.5485

iteration 24 20

time 375.63s 108.05s

solver output fail success

• The bounds in the symmetry reduced program is NOT CORRECT, as the solver

couldn’t solve it accurately due to numerical instability

• The facially and symmetry reduced program is solved CORRECTED, it also takes

less iteration and time
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Alternating direction method of multipliers (ADMM)

• Our technique fits surprisingly well in an ADMM approach

• Symmetry and facial reduction have a natural splitting, and it results in extremely

cheap update in ADMM

• We are able to solve some huge SDP instances for the quadratic assignment problem

•

Mittelmann&Peng Hu,Sotirov&Wolkowicz

Instance Upper bound bound time bound time

Harper128 2479944 2446944 1491s 2437880 186s

Harper256 22370940 - - 22205236 432s

Harper516 201329908 - - 200198783 1903s

• The interior point method cannot solve this QAP with n = 30

• The best algorithm in the literature takes 1640 seconds to solve the same SDP

relaxation for an QAP instance with n = 64
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Summary

Input 1 Input 2 Output

SDP matrix ∗-algebra

symmetry reduced SDP

+ reduced problem size

– numerical issues

SDP exposing vector

facially reduced SDP

+ numerically stable

– symmetry not exploited

symmetry

reduced
SDP

exposing vector

in the algebra

facially & symmetry reduced SDP

+ numerically stable

+ reduced problem size
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